已知拋物線的焦點(diǎn)為F2,點(diǎn)F1與F2關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,直線m垂直于軸(垂足為T(mén)),與拋物線交于不同的兩點(diǎn)P、Q,且.
(Ⅰ)求點(diǎn)T的橫坐標(biāo);
(Ⅱ)若橢圓C以F1,F2為焦點(diǎn),且F1,F2及橢圓短軸的一個(gè)端點(diǎn)圍成的三角形面積為1.
① 求橢圓C的標(biāo)準(zhǔn)方程;
② 過(guò)點(diǎn)F2作直線l與橢圓C交于A,B兩點(diǎn),設(shè),若的取值范圍.
(Ⅰ) ;
(Ⅱ)(ⅰ;(ⅱ).
【解析】
試題分析:(Ⅰ)由題意得,,設(shè),
則,.
由,
得即,① 3分
又在拋物線上,則,②
聯(lián)立①、②易得 5分
(Ⅱ)(ⅰ)設(shè)橢圓的半焦距為,由題意得,
設(shè)橢圓的標(biāo)準(zhǔn)方程為,
由,解得 6分
從而
故橢圓的標(biāo)準(zhǔn)方程為 7分
(ⅱ)方法一:
容易驗(yàn)證直線的斜率不為0,設(shè)直線的方程為
將直線的方程代入中得:. 8分
設(shè),則由根與系數(shù)的關(guān)系,
可得: ⑤
⑥ 9分
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013061511100935238383/SYS201306151111181492203350_DA.files/image028.png">,所以,且.
將⑤式平方除以⑥式,得:
由
所以 11分
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013061511100935238383/SYS201306151111181492203350_DA.files/image035.png">,所以,
又,所以,
故
,
令,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013061511100935238383/SYS201306151111181492203350_DA.files/image041.png"> 所以,即,
所以.
而,所以.
所以. 14分
方法二:
1)當(dāng)直線的斜率不存在時(shí),即時(shí),,,
又,所以 8分
2)當(dāng)直線的斜率存在時(shí),即時(shí),設(shè)直線的方程為
由得
設(shè),顯然,則由根與系數(shù)的關(guān)系,
可得:, 9分
⑤
⑥
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013061511100935238383/SYS201306151111181492203350_DA.files/image028.png">,所以,且.
將⑤式平方除以⑥式得:
由得即
故,解得 10分
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013061511100935238383/SYS201306151111181492203350_DA.files/image035.png">,所以,
又,
故
11分
令,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013061511100935238383/SYS201306151111181492203350_DA.files/image066.png"> 所以,即,
所以.
所以 13分
綜上所述:. 14分
考點(diǎn):本題主要考查拋物線的幾何性質(zhì),橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,平面向量的坐標(biāo)運(yùn)算。
點(diǎn)評(píng):難題,求橢圓的標(biāo)準(zhǔn)方程,主要運(yùn)用了橢圓的幾何性質(zhì),注意明確焦點(diǎn)軸和a,b,c的關(guān)系。曲線關(guān)系問(wèn)題,往往通過(guò)聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題解法較多,對(duì)學(xué)生的復(fù)雜式子變形能力要求較高。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年浙江省高三上學(xué)期第三次統(tǒng)練文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知拋物線的焦點(diǎn)為F,過(guò)F的直線交拋物線于M、N兩點(diǎn),其準(zhǔn)線與x軸交于K點(diǎn).
(1)求證:KF平分∠MKN;
(2)O為坐標(biāo)原點(diǎn),直線MO、NO分別交準(zhǔn)線于點(diǎn)P、Q,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年遼寧沈陽(yáng)二中等重點(diǎn)中學(xué)協(xié)作體高三領(lǐng)航高考預(yù)測(cè)(二)理數(shù)學(xué)卷(解析版) 題型:填空題
已知拋物線的焦點(diǎn)為F,過(guò)拋物線在第一象限部分上一點(diǎn)P的切線為,過(guò)P點(diǎn)作平行于軸的直線,過(guò)焦點(diǎn)F作平行于的直線交于M,若,則點(diǎn)P的坐標(biāo)為 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012屆河北省唐山市高三年級(jí)第一學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)已知拋物線的焦點(diǎn)為F,過(guò)點(diǎn)F作直線與拋物線交于A,B兩點(diǎn),拋物線的準(zhǔn)線與軸交于點(diǎn)C。
(1)證明:;
(2)求的最大值,并求取得最大值時(shí)線段AB的長(zhǎng)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(全國(guó)Ⅰ)理科數(shù)學(xué)全解全析 題型:解答題
(本小題滿分12分)(注意:在試題卷上作答無(wú)效)
已知拋物線的焦點(diǎn)為F,過(guò)點(diǎn)的直線與相交于、兩點(diǎn),點(diǎn)A關(guān)于軸的對(duì)稱點(diǎn)為D .
(Ⅰ)證明:點(diǎn)F在直線BD上;
(Ⅱ)設(shè),求的內(nèi)切圓M的方程 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年黑龍江省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:選擇題
已知拋物線的焦點(diǎn)為F,準(zhǔn)線為,經(jīng)過(guò)F且斜率為的直線與拋物線在軸上方的部分相交于點(diǎn)A,且AK,垂足為K,則的面積是( 。
A 4 B C D 8
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com