據《中國新聞網》1021日報道,全國很多省市將英語考試作為高考改革的重點,一時間“英語考試該如何改”引起廣泛關注.為了解某地區(qū)學生和包括老師、家長在內的社會人士高考英語改革的看法,某媒體在該地區(qū)選擇了3600人調查,就是否“取消英語聽力”的問題,調查統(tǒng)計的結果如下表:

 

應該取消

應該保留

無所謂

在校學生

2100

120

y

社會人士

600

x

z

已知在全體樣本中隨機抽取1人,抽到持“應該保留”態(tài)度的人的概率為0.05

(Ⅰ)現(xiàn)用分層抽樣的方法在所有參與調查的人中抽取360人進行問卷訪談,問應在持“無所謂”態(tài)度的人中抽取多少人?

)在持應該保留態(tài)度的人中,用分層抽樣的方法抽取6人平均分成兩組進行深入交流,求第一組中在校學生人數(shù)ξ的分布列和數(shù)學期望.

 

【答案】

I)應在“無所謂”態(tài)度抽取720×=72人;

(Ⅱ)ξ的分布列為:

ξ

1

2

3

P

Eξ=2

【解析】

試題分析:(I)在全體樣本中隨機抽取1人,抽到持“應該保留”態(tài)度的人的概率為0.05,由此可求得x,進而可求得 持“無所謂”態(tài)度的人數(shù). 分層抽樣,實質上就是按比例抽樣,所以根據比例式即可得在“無所謂”態(tài)度中抽取的人數(shù).(Ⅱ)由(I)知持“應該保留”態(tài)度的一共有180人,根據比例式即可得在所抽取的6人中,在校學生為=4人,社會人士為=2.現(xiàn)將這6人平均分為兩組,注意這兩組編了號的,故共有種分法(若是所分兩組不編號,則有種分法).因為在校學生共有4人,故ξ=12,3,由古典概型的概率公式得:P(ξ=1)=,P(ξ=2)=,P(ξ=3)=,從而可得ξ的分布列及均值.

試題解析:(I)∵ 抽到持“應該保留”態(tài)度的人的概率為0.05,

=0.05,解得x=602

∴持“無所謂”態(tài)度的人數(shù)共有3600-2100-120-600-60=7204

∴應在“無所謂”態(tài)度抽取720×=72人. 6

(Ⅱ)由(I)知持“應該保留”態(tài)度的一共有180人,

∴在所抽取的6人中,在校學生為=4人,社會人士為=2人,

于是第一組在校學生人數(shù)ξ=1,2,3, 8

P(ξ=1)=P(ξ=2)=,P(ξ=3)=,

ξ的分布列為:

ξ

1

2

3

P

10

Eξ=1×+2×+3×=212

考點:1、分層抽樣;2、離散型隨機變量的分布列及數(shù)學期望.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

據《中國新聞網》10月21日報道,全國很多省市將英語考試作為高考改革的重點,一時間“英語考試該如何改”引起廣泛關注.為了解某地區(qū)學生和包括老師、家長在內的社會人士對高考英語改革的看法,某媒體在該地區(qū)選擇了3600人調查(若所選擇的在校學生的人數(shù)低于被調查人群總數(shù)的80%,則認為本次調查“失效”),就“是否取消英語聽力”的問題,調查統(tǒng)計的結果如下表:
態(tài)度
調查人群
應該取消 應該保留 無所謂
在校學生 2100人 120人 y人
社會人士 600人 x人 z人
已知在全體樣本中隨機抽取1人,抽到持“應該保留”態(tài)度的人的概率為0.05.
(Ⅰ)現(xiàn)用分層抽樣的方法在所有參與調查的人中抽取360人進行深入訪談,問應在持“無所謂”態(tài)度的人中抽取多少人?
(Ⅱ)已知y≥657,z≥55,求本次調查“失效”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年四川綿陽高中高三第二次診斷性考試文科數(shù)學試卷(解析版) 題型:解答題

據《中國新聞網》1021日報道,全國很多省市將英語考試作為高考改革的重點,一時間“英語考試該如何改”引起廣泛關注.為了解某地區(qū)學生和包括老師、家長在內的社會人士高考英語改革的看法,某媒體在該地區(qū)選擇了3600人調查(若所選擇的在校學生的人數(shù)低于被調查人群總數(shù)的80%,則認為本次調查“失效”),就“是否取消英語聽力”的問題調查統(tǒng)計的結果如下表:

 

應該取消

應該保留

無所謂

在校學生

2100

120

y

社會人士

600

x

z

已知在全體樣本中隨機抽取1人,抽到持“應該保留”態(tài)度的人的概率為0.05

(Ⅰ)現(xiàn)用分層抽樣的方法在所有參與調查的人中抽取360人進行深入訪談,問應在持“無所謂”態(tài)度的人中抽取多少人?

(Ⅱ)已知y657,z55,求本次調查“失效”的概率.

 

查看答案和解析>>

同步練習冊答案