【題目】2009年推出一種新型家用轎車,購買時費(fèi)用為萬元,每年應(yīng)交付保險費(fèi)、養(yǎng)路費(fèi)及汽油費(fèi)共萬元,汽車的維修費(fèi)為:第一年無維修費(fèi)用,第二年為萬元,從第三年起,每年的維修費(fèi)均比上一年增加萬元.
(1)設(shè)該輛轎車使用年的總費(fèi)用(包括購買費(fèi)用、保險費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)及維修費(fèi))為,求的表達(dá)式;
(2)這種汽車使用多少年報廢最合算(即該車使用多少年,年平均費(fèi)用最少)?
【答案】(1);(2).
【解析】
試題分析:根據(jù)題意分析可知,使用年的總費(fèi)用包含三部分,第一部分是購買費(fèi)用,固定值為萬元,第二部分是保險費(fèi)用、養(yǎng)路費(fèi)及汽油費(fèi)用共萬元,第三部分是維修費(fèi)用,根據(jù)題意維修用為等差數(shù)列,首項為,公差為,因此年的維修費(fèi)用為,所以;(2)根據(jù)題意,年平均費(fèi)用為,所以問題轉(zhuǎn)化為求的最小值,可以利用均值不等式求最小值.
試題解析:(1)由題意得:每年的維修費(fèi)構(gòu)成一等差數(shù)列,年的維修總費(fèi)用為
(萬元)………………………………3分
所以(萬元)……………………6分
(2)該輛轎車使用年的年平均費(fèi)用為
………………………………8分
(萬元)……………………………………10分
當(dāng)且僅當(dāng)時取等號,此時.
答:這種汽車使用12年報廢最合算.…………12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:直線與圓有兩個交點(diǎn);命題: .
(1)若為真命題,求實數(shù)的取值范圍;
(2)若為真命題, 為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國男子籃球職業(yè)聯(lián)賽總決賽采用七場四勝制(即先勝四場者獲勝),進(jìn)入總決賽的甲乙兩隊中,若每一場比賽甲隊獲勝的概率為,乙隊獲勝的概率為,假設(shè)每場比賽的結(jié)果互相獨(dú)立,現(xiàn)已賽完兩場,乙隊以2:0暫時領(lǐng)先.
(1)求甲隊獲得這次比賽勝利的概率;
(2)設(shè)比賽結(jié)束時兩隊比賽的場數(shù)為隨機(jī)變量,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為常數(shù),函數(shù).
(1)當(dāng)時,求函數(shù)的最小值;
(2)若有兩個極值點(diǎn),():
①求實數(shù)的取值范圍;
②求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,平面,四邊形是直角梯形,其中,. ,.
(1)求異面直線與所成角的大;
(2)若平面內(nèi)有一經(jīng)過點(diǎn)的曲線,該曲線上的任一動點(diǎn)都滿足與所成角的大小恰等于與所成角.試判斷曲線的形狀并說明理由;
(3)在平面內(nèi),設(shè)點(diǎn)是(2)題中的曲線在直角梯形內(nèi)部(包括邊界)的一段曲線上的動點(diǎn),其中為曲線和的交點(diǎn).以為圓心,為半徑的圓分別與梯形的邊、交于、兩點(diǎn).當(dāng)點(diǎn)在曲線段上運(yùn)動時,試求圓半徑的范圍及的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,點(diǎn)為坐標(biāo)原點(diǎn),若橢圓與曲線的交點(diǎn)分別為(下上),且兩點(diǎn)滿足.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓上異于其頂點(diǎn)的任一點(diǎn),作的兩條切線,切點(diǎn)分別為,且直線在軸、軸上的截距分別為,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為為上異于原點(diǎn)的任意一點(diǎn),過點(diǎn)的直線交于另一點(diǎn),交軸的正半軸于點(diǎn),且有.當(dāng)點(diǎn)橫坐標(biāo)為時,為正三角形.
(1)求的方程;
(2)若直線,且和 有且只有一個公共點(diǎn).
①證明直線過定點(diǎn),并求出定點(diǎn)坐標(biāo);
②的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品和產(chǎn)品需要甲、乙兩種新型材料,生產(chǎn)一件產(chǎn)品需要甲材料1.5,乙材料1,用5個工時,生產(chǎn)一件產(chǎn)品需要甲材料0.5,乙材料0.3,用3個工時,生產(chǎn)一件產(chǎn)品的利潤為2100元,生產(chǎn)一件產(chǎn)品的利潤為900元.該企業(yè)現(xiàn)有甲材料150,乙材料90,則在不超過600個工時的條件下,生產(chǎn)產(chǎn)品的利潤之和的最大值為____________元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com