【題目】已知函數(shù).

(1)若,求函數(shù)的極值;

(2)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍.

【答案】(1)詳見解析;(2)

【解析】

(1)當(dāng)時(shí),,先求定義域,再求導(dǎo)并判斷單調(diào)性,即可求出函數(shù)的極值;

(2)代入得,即,令,只需求出即可,,令,利用導(dǎo)數(shù)研究其單調(diào)性可得所以上單調(diào)遞增,且,對(duì),即可求出答案.

(1)當(dāng)時(shí),,函數(shù)的定義域?yàn)?/span>

所以.

當(dāng),,所以函數(shù)上單調(diào)遞增;

當(dāng)時(shí),,函數(shù)上單調(diào)遞減.

所以當(dāng)時(shí),函數(shù)有極大值,無極小值.

(2)依題意,得,即

,

所以,令,則.

,所以,

所以上單調(diào)遞增,又,當(dāng)時(shí),

所以上單調(diào)遞增,且.

當(dāng)時(shí),,上單調(diào)遞增,

,滿足條件;

當(dāng)時(shí),.

又因?yàn)?/span>

所以,使得

當(dāng),當(dāng)

所以上單調(diào)遞減,,都有,不符合題意.

綜上所述,實(shí)數(shù)的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知離心率為的橢圓的左頂點(diǎn)為,左焦點(diǎn)為,及點(diǎn),且、成等比數(shù)列.

1)求橢圓的方程;

2)斜率不為的動(dòng)直線過點(diǎn)且與橢圓相交于、兩點(diǎn),記,線段上的點(diǎn)滿足,試求為坐標(biāo)原點(diǎn))面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019新型冠狀病譯(2019-nCoV)于2020112日被世界衛(wèi)生組織命名.冠狀病毒是一個(gè)大型病毒家族,可引起感冒以及中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重疾病.某醫(yī)院對(duì)病患及家屬是否帶口罩進(jìn)行了調(diào)查,統(tǒng)計(jì)人數(shù)得到如下列聯(lián)表:

戴口罩

未戴口罩

總計(jì)

未感染

30

10

40

感染

4

6

10

總計(jì)

34

16

50

1)根據(jù)上表,判斷是否有95%的把握認(rèn)為未感染與戴口罩有關(guān);

2)在上述感染者中,用分層抽樣的方法抽取5人,再在這5人中隨機(jī)抽取2人,求這2人都未戴口罩的概率.

參考公式:,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場(chǎng)有一塊農(nóng)田,如圖所示,它的邊界由圓O的一段圓弧P為此圓弧的中點(diǎn))和線段MN構(gòu)成.已知圓O的半徑為40米,點(diǎn)PMN的距離為50米.現(xiàn)規(guī)劃在此農(nóng)田上修建兩個(gè)溫室大棚,大棚Ⅰ內(nèi)的地塊形狀為矩形ABCD,大棚Ⅱ內(nèi)的地塊形狀為,要求均在線段上,均在圓弧上.設(shè)OCMN所成的角為

(1)用分別表示矩形的面積,并確定的取值范圍;

(2)若大棚Ⅰ內(nèi)種植甲種蔬菜,大棚Ⅱ內(nèi)種植乙種蔬菜,且甲、乙兩種蔬菜的單位面積年產(chǎn)值之比為.求當(dāng)為何值時(shí),能使甲、乙兩種蔬菜的年總產(chǎn)值最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的極坐標(biāo)方程和曲線的參數(shù)方程;

(2)若,直線與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左焦點(diǎn)為,右頂點(diǎn)為,離心率為.已知是拋物線的焦點(diǎn), 到拋物線的準(zhǔn)線的距離為.

(I)求橢圓的方程和拋物線的方程;

(II)設(shè)上兩點(diǎn), 關(guān)于軸對(duì)稱,直線與橢圓相交于點(diǎn)異于點(diǎn)),直線軸相交于點(diǎn).若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體ABCD中,△ABC是等邊三角形,平面ABC⊥平面ABD,點(diǎn)M為棱AB的中點(diǎn),AB=2,AD=,BAD=90°

求證:ADBC;

求異面直線BCMD所成角的余弦值;

(Ⅲ)求直線CD與平面ABD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,點(diǎn)、均在橢圓上,,點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱,的最大值為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若,求外接圓的半徑的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,河的兩岸分別有生活小區(qū),其中,三點(diǎn)共線,的延長線交于點(diǎn),測(cè)得,,,若以所在直線分別為軸建立平面直角坐標(biāo)系則河岸可看成是曲線(其中是常數(shù))的一部分,河岸可看成是直線(其中為常數(shù))的一部分.

1)求的值.

2)現(xiàn)準(zhǔn)備建一座橋,其中分別在上,且,的橫坐標(biāo)為.寫出橋的長關(guān)于的函數(shù)關(guān)系式,并標(biāo)明定義域;當(dāng)為何值時(shí),取到最小值?最小值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案