下列不等式有實(shí)數(shù)解的是

[  ]

A.≤0

B.<4

C.

D.<3

答案:C
解析:

由不等式的解法知C 正確


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2-x-1-3,x∈R,g(x)=
f(x-1)+2,-1<x≤0
g(x-1)+k,x>0
,有下列說(shuō)法:
①不等式f(x)>0的解集是(-∞,-1-log23);
②若關(guān)于x的方程f2(x)+8f(x)-m=0有實(shí)數(shù)解,則m≥-16;
③當(dāng)k=0時(shí),若g(x)≤m有解,則m的取值范圍為[0,+∞);若g(x)<m恒成立,則m的取值范圍為[1,+∞);
④若k=2,則函數(shù)h(x)=g(x)-2x在區(qū)間[0,n](n∈N*)上有n+1個(gè)零點(diǎn).
其中你認(rèn)為正確的所有說(shuō)法的序號(hào)是
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)已知定義在上的函數(shù)同時(shí)滿足:①對(duì)任意,都有②當(dāng)時(shí),,試解決下列問(wèn)題:   (Ⅰ)求在時(shí),的表達(dá)式;(Ⅱ)若關(guān)于的方程上有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;(Ⅲ)若對(duì)任意,關(guān)于的不等式都成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省成都七中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:填空題

已知函數(shù)f(x)=2-x-1-3,x∈R,,有下列說(shuō)法:
①不等式f(x)>0的解集是(-∞,-1-log23);
②若關(guān)于x的方程f2(x)+8f(x)-m=0有實(shí)數(shù)解,則m≥-16;
③當(dāng)k=0時(shí),若g(x)≤m有解,則m的取值范圍為[0,+∞);若g(x)<m恒成立,則m的取值范圍為[1,+∞);
④若k=2,則函數(shù)h(x)=g(x)-2x在區(qū)間[0,n](n∈N*)上有n+1個(gè)零點(diǎn).
其中你認(rèn)為正確的所有說(shuō)法的序號(hào)是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省成都七中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:填空題

已知函數(shù)f(x)=2-x-1-3,x∈R,,有下列說(shuō)法:
①不等式f(x)>0的解集是(-∞,-1-log23);
②若關(guān)于x的方程f2(x)+8f(x)-m=0有實(shí)數(shù)解,則m≥-16;
③當(dāng)k=0時(shí),若g(x)≤m有解,則m的取值范圍為[0,+∞);若g(x)<m恒成立,則m的取值范圍為[1,+∞);
④若k=2,則函數(shù)h(x)=g(x)-2x在區(qū)間[0,n](n∈N*)上有n+1個(gè)零點(diǎn).
其中你認(rèn)為正確的所有說(shuō)法的序號(hào)是   

查看答案和解析>>

同步練習(xí)冊(cè)答案