已知中心在原點且焦點在x軸的雙曲線C,過點P(2,)且離心率為2,則雙曲線C的標(biāo)準(zhǔn)方程為____________.

試題分析:設(shè)此雙曲線方程為,所以解得,所以此雙曲線方程為。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線的中心在原點,焦點F1,F2在坐標(biāo)軸上,離心率為,且過點P(4,-).
(1)求雙曲線的方程.
(2)若點M(3,m)在雙曲線上,求證:·=0.
(3)求△F1MF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知中心在原點,焦點在x軸上的雙曲線的離心率為,實軸長為4,則雙曲線的方程為    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

中心在原點的雙曲線,一個焦點為,一個焦點到最近頂點的距離是,則雙曲線的方程是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線-y2=1(n>1)的左、右兩個焦點為F1,F2,P在雙曲線上,且滿足|PF1|+|PF2|=2,則△PF1F2的面積為(  )
A.B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線=1(a>0,b>0)的左、右焦點分別為F1,F2,點O為雙曲線的中心,點P在雙曲線右支上,△PF1F2內(nèi)切圓的圓心為Q,圓Qx軸相切于點A,過F2作直線PQ的垂線,垂足為B,則下列結(jié)論成立的是(  )
A.|OA|>|OB| B.|OA|<|OB|
C.|OA|=|OB| D.|OA|與|OB|大小關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

到雙曲線的漸近線的距離為______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知F1F2為雙曲線Cx2y2=2的左、右焦點,點PC上,|PF1|=2|PF2|,則cos∠F1PF2=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過雙曲線的一個焦點作實軸的垂線,交雙曲線于兩點,若線段的長度恰等于焦距,則雙曲線的離心率為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案