已知點 M(0,-1),F(xiàn)(0,1),過點M的直線l與曲線y=
13
x3-4x+4
在x=-2處的切線平行.
(1)求直線l的方程;
(2)求以點F為焦點,l為準線的拋物線C的方程.
分析:(1)設(shè)函數(shù)f(x)=
1
3
x3-4x+4
,可得它的導(dǎo)數(shù)f'(x)=x2-4,從而得到直線l的斜率為f'(2)=0,最后結(jié)合直線l經(jīng)過點M(0,-1)得直線l的方程;
(2)根據(jù)題意,拋物線的開口向上,設(shè)出它的標準方程,結(jié)合焦點的坐標即可得到拋物線C的方程.
解答:解:(1)設(shè)y=
1
3
x3-4x+4
=f(x),則f'(x)=x2-4
∴曲線y=
1
3
x3-4x+4
在x=-2處的切線斜率k=f'(2)=0
∵過點M(0,-1)的直線l與曲線y=
1
3
x3-4x+4
在x=-2處的切線平行,
∴直線l的斜率也為0,直線l的方程是:y=-1;
(2)∵拋物線C以點F(0,1)為焦點,直線l為準線
∴設(shè)拋物線方程為x2=2py,可得
p
2
=1
,2p=4
因此所求拋物線的方程為x2=4y.
點評:本題給出已知曲線上一點處的切線,求與它平行的直線l的方程,并且求另一個拋物線方程,著重考查了拋物線的標準方程和導(dǎo)數(shù)的幾何意義等知識點,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點M(0,-1),點N在直線x-y+1=0,若直線MN垂直于直線x+2y-3=0,則N點坐標是
(2,3)
(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點M(0,1,-2),平面π過原點,且垂直于向量
n
=(1,-2,2)
,則點M到平面π的距離為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線C與橢圓
x2
8
+
y2
4
=1有相同的焦點,直線y=
3
3
x為C的一條漸近線.
(1)求雙曲線C的方程;
(2)已知點M(0,1),設(shè)P是雙曲線C上的點,Q是點P關(guān)于原點的對稱點,求
MP
MQ
的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點M(0,-1),直線l:y=mx+1與曲線C:ax2+y2=2(m,a∈R)交于A、B兩點.
(1)當m=0時,有∠AOB=
π
3
,求曲線C的方程;
(2)當實數(shù)a為何值時,對任意m∈R,都有
OA
OB
=-2
成立.
(3)設(shè)動點P滿足
MP
=
OA
+
OB
,當a=-2,m變化時,求|OP|的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案