過(guò)點(diǎn)(-3,2)的直線與拋物線y2=4x只有一個(gè)公共點(diǎn),求直線方程.

答案:
解析:

  解析:顯然,直線存在斜率k,設(shè)其方程為y-2=k(x+3),由

  消去x,整理得ky2-4y+8+12k=0. ①

  (1)當(dāng)k=0時(shí),方程①化為-4y+8=0,即y=2.

  此時(shí)過(guò)(-3,2)的直線方程為y=2,滿(mǎn)足條件.

  (2)當(dāng)k≠0時(shí),方程①應(yīng)有兩個(gè)相等實(shí)根.

  由即

  得k=或k=-1.

  ∴直線方程為y-2=(x+3)或y-2=-(x+3),

  即x-3y+9=0或x+y+1=0.

  故所求直線有三條,其方程分別為y=2,x-3y+9=0,x+y+1=0.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知邊長(zhǎng)為2的菱形ABCD,如圖(a)所示,∠BAD=60°,過(guò)D點(diǎn)作DE⊥AB于E點(diǎn),現(xiàn)沿著DE折成一個(gè)直二面角,如圖(b)所示;
(1)求AC與BD所成角的余弦值;
(2)求點(diǎn)D到平面ABC的距離;
(3)連接CE,在CE上取點(diǎn)G,使EG=
2
7
7
,連接BG,求證:AC⊥BG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

如圖,A1B1C1ABC是直三棱柱,過(guò)點(diǎn)A1B1、C1的平面和平面ABC的交線記作l

  (1)判定直線A1C1l的位置關(guān)系,并加以證明;

  (2)若A1A=1,AB=4,BC=3,∠ABC=90°,求頂點(diǎn)A1到直線l的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

如圖,A1B1C1ABC是直三棱柱,過(guò)點(diǎn)A1、B1C1的平面和平面ABC的交線記作l

  (1)判定直線A1C1l的位置關(guān)系,并加以證明;

  (2)若A1A=1,AB=4,BC=3,∠ABC=90°,求頂點(diǎn)A1到直線l的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(廣東卷理20)如圖5所示,四棱錐的底面是半徑為的圓的內(nèi)接四邊形,其中是圓的直徑,,,

直底面,分別是上的點(diǎn),且

,過(guò)點(diǎn)的平行線交

(1)求與平面所成角的正弦值;

(2)證明:是直角三角形;

(3)當(dāng)時(shí),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省高三5月模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的離心率為,直線:與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切.

(1)求橢圓的方程;

(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線過(guò)點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線

于點(diǎn),線段垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;

(3)當(dāng)P不在軸上時(shí),在曲線上是否存在兩個(gè)不同點(diǎn)C、D關(guān)于對(duì)稱(chēng),若存在,

求出的斜率范圍,若不存在,說(shuō)明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案