已知F1、F2為雙曲線C:x2-y2=1的左、右焦點,點P在C上,∠F1PF2=60°,則|
PF1
|•|
PF2
|=( 。
A、2B、4C、6D、8
考點:雙曲線的簡單性質
專題:解三角形,圓錐曲線的定義、性質與方程
分析:求出雙曲線的a,b,c,再由雙曲線的定義和三角形的余弦定理,配方化簡計算即可得到所求值.
解答: 解:雙曲線C:x2-y2=1的a=b=1,c=
a2+b2
=
2
,
設|PF1|=m,|PF2|=n,
則由雙曲線的定義可得|m-n|=2a=2,
在△PF1F2中,|F1F2|2=|PF1|2+|PF2|2-2|PF1|•|PF2|cos60°,
即為4c2=m2+n2-mn=(m-n)2+mn,
即有4×2=4+mn,
即mn=4.
故選B.
點評:本題考查雙曲線的定義、方程和性質,同時考查余弦定理的運用,運用雙曲線的定義和配方是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖所示,在三棱錐O-ABC中,OA=OB=OC=AB=BC=AC=1,則求異面直線OA與BC所成的角為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

記等差數(shù)列{an}的前n項和為Sn,已知a1=2,且數(shù)列{Sn}也為等差數(shù)列.則a11=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,拋物線y=4-x2與直線y=3x的兩交點為A、B,點P在拋物線上從A向B運動.
(1)求使△PAB的面積最大時P點的坐標(a,b).
(2)證明由拋物線與線段AB圍成的圖形,被直線x=a分為面積相等的兩部分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x2+mx-2m-3
(1)若函數(shù)在區(qū)間(-∞,0)與(1,+∞)內各有一個零點,求實數(shù)m的取值范圍;
(2)若不等式f(x)≥(3m+1)x-3m-11在x∈(
1
2
,+∞)上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)數(shù)列{an}前n項和Sn,4Sn=an+1(n∈N*),求a1,a2的值
(2)當{an}是等差數(shù)列,公差d,若點(an,bn)在函數(shù)f(x)=2x的圖象上,(n∈N*),a1=-2,點(a8,4b3)在函數(shù)f(x)的圖象上,求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,d=2,an=11,Sn=35,n∈N+,求a1和n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x+α)cosx為奇函數(shù),則a=
 
;現(xiàn)將函數(shù)f(x)的圖象沿x軸向左平移
π
2
個單位,得到的圖象所對應的函數(shù)記為g(x),那么其解析式g(x)=
 
;且函數(shù)g(x)圖象的對稱中心為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在長方體ABCD-A1B1C1D1中,AB=AA1=2,AD=1,E為CC1的中點,則異面直線BC1與AE所成角的余弦值為(  )
A、
10
10
B、
10
3
C、
30
10
D、
5
2

查看答案和解析>>

同步練習冊答案