某市居民自來水收費標準如下:每戶每月用水不超過4噸時,每噸為1.80元,當用水超過4噸時,超過部分每噸3.00元,某月甲、乙兩戶共交水費y元,已知甲、乙兩戶該月用水量分別為5x噸、3x噸.
(1)求y關于x的函數(shù);
(2)若甲、乙兩戶該月共交水費26.4元,分別求出甲、乙兩戶該月的用水量和水費.
科目:高中數(shù)學 來源: 題型:解答題
如圖,ABCD是正方形空地,邊長為30m,電源在點P處,點P到邊AD、AB距離分別為9m,3m.某廣告公司計劃在此空地上豎一塊長方形液晶廣告屏幕MNEF,MN:NE=16:9.線段MN必須過點P,端點M,N分別在邊AD,AB上,設AN=x(m),液晶廣告屏幕MNEF的面積為S(m2).
(1)用x的代數(shù)式表示AM,并寫出x的取值范圍;
(2)求S關于x的函數(shù)關系式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如果n件產(chǎn)品中任取一件樣品是次品的概率為,則認為這批產(chǎn)品中有件次品。某企業(yè)的統(tǒng)計資料顯示,產(chǎn)品中發(fā)生次品的概率p與日產(chǎn)量n滿足,有已知每生產(chǎn)一件正品可贏利a元,如果生產(chǎn)一件次品,非但不能贏利,還將損失元().
(1)求該企業(yè)日贏利額的最大值;
(2)為保證每天的贏利額不少于日贏利額最大值的50%,試求該企業(yè)日產(chǎn)量的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
請你設計一個包裝盒,如圖所示,是邊長為的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得四個點重合于圖中的點P,正好形成一個正四棱柱形狀的包裝盒,在上是被切去的等腰直角三角形斜邊的兩個端點,設.
(1)若廣告商要求包裝盒側(cè)面積最大,試問應取何值?
(2)若廣告商要求包裝盒容積最大,試問應取何值?并求出此時包裝盒的高與底面邊長的比值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知二次函數(shù),,的最小值為.
⑴求函數(shù)的解析式;
⑵設,若在上是減函數(shù),求實數(shù)的取值范圍;
⑶設函數(shù),若此函數(shù)在定義域范圍內(nèi)不存在零點,求實數(shù)的取值范圍.[
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設該蓄水池的底面半徑為米,高為米,體積為立方米.假設建造成本僅與表面積有關,側(cè)面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為元(為圓周率).
(1)將表示成的函數(shù),并求該函數(shù)的定義域;
(2)討論函數(shù)的單調(diào)性,并確定和為何值時該蓄水池的體積最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)的圖象與函數(shù)h(x)=x++2的圖象關于點A(0,1)對稱.
(1)求函數(shù)f(x)的解析式;
(2)若g(x)=f(x)+,g(x)在區(qū)間(0,2]上的值不小于6,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)常數(shù))滿足.
(1)求出的值,并就常數(shù)的不同取值討論函數(shù)奇偶性;
(2)若在區(qū)間上單調(diào)遞減,求的最小值;
(3)在(2)的條件下,當取最小值時,證明:恰有一個零點且存在遞增的正整數(shù)數(shù)列,使得成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某公司承建扇環(huán)面形狀的花壇如圖所示,該扇環(huán)面花壇是由以點為圓心的兩個同心圓弧、弧以及兩條線段和圍成的封閉圖形.花壇設計周長為30米,其中大圓弧所在圓的半徑為10米.設小圓弧所在圓的半徑為米(),圓心角為弧度.
(1)求關于的函數(shù)關系式;
(2)在對花壇的邊緣進行裝飾時,已知兩條線段的裝飾費用為4元/米,兩條弧線部分的裝飾費用為9元/米.設花壇的面積與裝飾總費用的比為,當為何值時,取得最大值?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com