設(shè)數(shù)列是等差數(shù)列,是各項(xiàng)均為正數(shù)的等比數(shù)列,且
(1)求數(shù)列的通項(xiàng)公式;
(2)若為數(shù)列的前項(xiàng)和,求.

(1)
(2)

解析試題分析:(1)設(shè)數(shù)列的公差為,的公比為
,消去
,從而

(2)記

兩式相減得





考點(diǎn):等差數(shù)列和等比數(shù)列
點(diǎn)評:主要是考查了等差數(shù)列和等比數(shù)列的求和以及通項(xiàng)公式的運(yùn)用,屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

等比數(shù)列的前項(xiàng)和為,已知對任意的 ,點(diǎn)均在函數(shù)均為常數(shù))的圖像上.
(Ⅰ)求的值;
(Ⅱ)當(dāng)時,記,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),數(shù)列項(xiàng)和,,數(shù)列,滿足.(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,證明: 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是首項(xiàng)為,公差為的等差數(shù)列(),是前項(xiàng)和. 記,,其中為實(shí)數(shù).
(1)若,且成等比數(shù)列,證明:;
(2)若是等差數(shù)列,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是公比為q的等比數(shù)列.
(Ⅰ) 推導(dǎo)的前n項(xiàng)和公式;
(Ⅱ) 設(shè)q≠1, 證明數(shù)列不是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和為Sn,且an是Sn與2的等差中項(xiàng),數(shù)列{an}中,b1=1,點(diǎn)P(bn,bn+1)在直線x-y+2=0上.
(Ⅰ) 求數(shù)列{an},{bn}的通項(xiàng)公式an和bn
(Ⅱ) 設(shè)cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是各項(xiàng)都為正數(shù)的等比數(shù)列, 是等差數(shù)列,且
(Ⅰ)求數(shù)列,的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列的前項(xiàng)和為,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列是首項(xiàng)的等比數(shù)列,且,成等差數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,設(shè)為數(shù)列的前項(xiàng)和,若對一切
成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列中, .
(Ⅰ)設(shè),求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)求證:是遞增數(shù)列的充分必要條件是 .

查看答案和解析>>

同步練習(xí)冊答案