已知函數(shù)f(x)=
x2,-1≤x≤1
1
x
,x>1
,則
e
-1
f(x)dx=
 
.(e為自然對數(shù)的底數(shù))
考點:定積分,分段函數(shù)的應(yīng)用
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:利用定積分的可加性,將所求分為-1到1和1到e的定積分,然后分別求出各段的定積分.
解答: 解:
e
-1
f(x)dx=
1
-1
x2dx+
e
1
1
x
dx
=
1
3
x3
|
1
-1
+lnx
|
e
1
=
2
3
+1=
5
3
;
故答案為:
5
3
點評:本題考查了定積分的運算法則,首先根據(jù)定積分的可加性將所求分成兩段上的積分,然后分別求值.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

九個人排成三行三列的方陣,從中任選三人,則至少有兩人位于同行或同列的概率為( 。
A、
3
7
B、
4
7
C、
1
14
D、
13
14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=a-bsin(4x-
π
3
)(b>0)的最大值是5,最小值是1,求函數(shù)y=-
2bsinx
a
+5的最大值,并求出此時x的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sinx(sinx+cosx)-1.
(1)求函數(shù)的最小正周期和最值;
(2)畫出函數(shù)在區(qū)間[-
π
2
,
π
2
]上的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)與g(x)是定義在同一區(qū)間D上的兩個函數(shù),若?x0∈D,使得|f(x0)-g(x0)|≤1,則稱f(x)和g(x)是D上的“接近函數(shù)”,D稱為“接近區(qū)間”;若?x∈D,都有|f(x)-g(x)|>1,則稱f(x)和g(x)是D上的“遠離函數(shù)”,D稱為“遠離區(qū)間”.給出以下命題:
①f(x)=x2+1與g(x)=x2+
3
2
是(-∞,+∞)上的“接近函數(shù)”;
②f(x)=x2-3x+4與g(x)=2x-3的一個“遠離區(qū)間”可以是[2,3];
③f(x)=
1-x2
和g(x)=-x+b(b>
2
)是(-1,1)上的“接近函數(shù)”,則
2
<b≤
2
+1;
④若f(x)=
lnx
x
+2ex與g(x)=x2+a+e2(e是自然對數(shù)的底數(shù))是[1,+∞)上的“遠離函數(shù)”,則a>1+
2
e

其中的真命題有
 
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)=ax-2x+2對于1≤x≤4,f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若執(zhí)行如圖的程序框圖,則輸出的k值是( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解關(guān)于x的方程:log4{2log3[1+3log2x]}=
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinx•(2cosx-sinx)+cos2x.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)設(shè)
π
4
<α<
π
2
,且f(α)=-
5
2
13
,求sin2α的值.

查看答案和解析>>

同步練習冊答案