C
分析:根據(jù)
,可得f(x)是周期為2的周期函數(shù). 再由f(x)是偶函數(shù),當(dāng)x∈[0,1]時,f(x)=x
2,可得函數(shù)在[-1,3]上的解析式.根據(jù)題意可得
函數(shù)y=f(x)的圖象與直線y=kx+k 有4個交點(diǎn),數(shù)形結(jié)合可得實(shí)數(shù)k的取值范圍.
解答:∵函數(shù)f(x)滿足
,故有f(x+2)=f(x),故f(x)是周期為2的周期函數(shù).再由f(x)是偶函數(shù),當(dāng)x∈[0,1]時,f(x)=x
2,
可得當(dāng)x∈[-1,0]時,f(x)=x
2,故當(dāng)x∈[-1,1]時,f(x)=x
2 ,當(dāng)x∈[1,3]時,f(x)=(x-2)
2.
由于函數(shù)g(x)=f(x)-kx-k有4個零點(diǎn),故函數(shù)y=f(x)的圖象與直線y=kx+k 有4個交點(diǎn),如圖所示:
把點(diǎn)(3,1)代入y=kx+k,可得k=
,數(shù)形結(jié)合可得實(shí)數(shù)k的取值范圍是
,
故選C.
點(diǎn)評:本題主要考查函數(shù)的周期性的應(yīng)用,函數(shù)的零點(diǎn)與方程的根的關(guān)系,體現(xiàn)了轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.