命題“存在x∈R,使得x2+2x+5=0”的否定是 .
【答案】分析:根據命題“存在x∈R,使得x2+2x+5=0”是特稱命題,其否定為全稱命題,將“存在”改為“任意”,“=“改為“≠”即可得答案.
解答:解:∵命題“存在x∈R,使得x2+2x+5=0”是特稱命題
∴命題的否定為:對任意x∈R,都有x2+2x+5≠0.
故答案為:對任意x∈R,都有x2+2x+5≠0.
點評:這類問題的常見錯誤是沒有把全稱量詞改為存在量詞,或者對于“>”的否定用“<”了.這里就有注意量詞的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.特稱命題的否定是全稱命題,“存在”對應“任意”.