12.如圖,在棱長(zhǎng)為a的正方體ABCD-A1B1C1D1中,P為A1D1的中點(diǎn),Q為A1B1上任意一點(diǎn),E,F(xiàn)為CD上任意兩點(diǎn),且EF的長(zhǎng)為定值,則以下四個(gè)值中為定值的編號(hào)是①②④.
①點(diǎn)P到平面QEF的距離;
②三棱錐P-QEF的體積;
③直線PQ與平面PEF所成的角;
④二面角P-EF-Q的大。

分析 對(duì)4個(gè)結(jié)論分別進(jìn)行判斷,即可得出結(jié)論.

解答 解:①中,∵平面QEF也就是平面A1B1CD,既然P和平面QEF都是固定的,∴P到平面A1B1CD的距離是定值,∴點(diǎn)P到平面QEF的距離為定值;
②中,∵△QEF的面積是定值(∵EF定長(zhǎng),Q到EF的距離就是Q到CD的距離也為定長(zhǎng),即底和高都是定值),再根據(jù)①的結(jié)論P(yáng)到平面QEF的距離也是定值,∴三棱錐的高也是定值,于是體積固定,∴三棱錐P-QEF的體積是定值;
③中,∵Q是動(dòng)點(diǎn),E,F(xiàn)也是動(dòng)點(diǎn),推不出定值的結(jié)論,∴直線PQ與平面PEF所成的角不是定值;
④中,由圖,平面QEF也就是平面A1B1CD,又∵平面PEF即為平面PCD,∴二面角P-EF-Q的大小為定值.
故答案為:①②④.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是直線與平面所成的角,二面角,棱錐的體積及點(diǎn)到平面的距離,其中兩線平行時(shí),一條線的上的點(diǎn)到另一條直線的距離相等,線面平行時(shí)直線上到點(diǎn)到平面的距離相等,平面平行時(shí)一個(gè)平面上的點(diǎn)到另一個(gè)平面的距離相等是解答本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若直線l:y=ax將不等式組$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-6≤0}\\{x≥0,y≥0}\end{array}\right.$,表示的平面區(qū)域的面積分為相等的兩部分,則實(shí)數(shù)a的值為(  )
A.$\frac{7}{11}$B.$\frac{9}{22}$C.$\frac{7}{13}$D.$\frac{9}{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若AB是拋物線y2=8x的一條過焦點(diǎn)F的弦,|AB|=20,AD、BC垂直于y軸,D、C分別為垂足,則梯形ABCD的中位線的長(zhǎng)是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知圓C:(x-3)2+(y-4)2=4,直線l過定點(diǎn)A(1,0).
(1)若l與圓相切,求l的方程;
(2)若l與圓相交于P,Q兩點(diǎn),線段PQ的中點(diǎn)為M,又l與x+2y+2=0的交點(diǎn)為N,判斷|AM|•|AN|是否為定值,若是,則求出定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=2,Sn=an+1-2(n+1)(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足bn+1-bn=4(n∈N*),且b1,b2,b5成等比數(shù)列,數(shù)列$\{\frac{b_n}{{{a_n}+2}}\}$的前n項(xiàng)和為Tn,求證:${T_n}=3-\frac{2n+3}{2^n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,PA⊥平面ABCD,AD∥BC,∠ABC=90°,AB=BC=PA=1,AD=3,E是PB的中點(diǎn).
(1)求證:AE⊥平面PBC;    
(2)求三棱錐C-AED的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.筆者隨機(jī)調(diào)查了福田區(qū)6個(gè)商店,其建筑面積x(千平方米)與年銷售額y(百萬元)數(shù)據(jù)如表所示:
x(面積)469788
y(銷售額)356457
(1)求y關(guān)于x的回歸直線方程;
(2)若線性關(guān)系存在,那么對(duì)于福田區(qū)一個(gè)擁有一萬平方米的商店來說,它的年銷售額約為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)$f(x)=\frac{2}{{{3^x}+1}}+sinx$,則f(-3)+f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,sinA:sinB:sinC=4:3:2,則最大角的余弦值是(  )
A.$\frac{1}{4}$B.$-\frac{1}{4}$C.$-\frac{2}{3}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案