【題目】[選修4-4:極坐標與參數方程]
在直角坐標系xOy中,直線l的參數方程為 (t為參數).在極坐標系(與直角坐標系xOy取相同的長度單位),且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=4sinθ.
(1)求圓C的直角坐標方程和直線l普通方程;
(2)設圓C與直線l交于點A,B,若點P的坐標為(3,0),求|PA|+|PB|.
科目:高中數學 來源: 題型:
【題目】已知過原點的動直線與圓 相交于不同的兩點.
(1)求圓的圓心坐標;
(2)求線段的中點的軌跡的方程;
(3)是否存在實數,使得直線 與曲線只有一個交點?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知A,B是橢圓 =1和雙曲線 =1的公共頂點,其中a>b>0,P是雙曲線上的動點,M是橢圓上的動點(P,M都異于A,B),且滿足 =λ( )(λ∈R),設直線AP,BP,AM,BM的斜率分別為k1 , k2 , k3 , k4 , 若k1+k2= ,則k3+k4= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若命題p:從有2件正品和2件次品的產品中任選2件得到都是正品的概率為三分之一;命題q:在邊長為4的正方形ABCD內任取一點M,則∠AMB>90°的概率為 ,則下列命題是真命題的是( )
A.p∧q
B.(p)∧q
C.p∧(q)
D.q
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】目前,學案導學模式已經成為教學中不可或缺的一部分,為了了解學案的合理使用是否對學生的期末復習有著重要的影響,我校隨機抽取100名學生,對學習成績和學案使用程度進行了調查,統(tǒng)計數據如表所示:
善于使用學案 | 不善于使用學案 | 總計 | |
學習成績優(yōu)秀 | 40 | ||
學習成績一般 | 30 | ||
總計 | 100 |
參考公式: ,其中n=a+b+c+d.
參考數據:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
已知隨機抽查這100名學生中的一名學生,抽到善于使用學案的學生概率是0.6.
(1)請將上表補充完整(不用寫計算過程);
(2)試運用獨立性檢驗的思想方法分析:有多大的把握認為學生的學習成績與對待學案的使用態(tài)度有關?
(3)利用分層抽樣的方法從善于使用學案的同學中隨機抽取6人,從這6人中抽出3人繼續(xù)調查,設抽出學習成績優(yōu)秀的人數為X,求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某車間為了給貧困山區(qū)的孩子們趕制一批愛心電子產品,需要確定加工零件所花費的時間,為此做了四次試驗,得到的數據如下表所示:
零件的個數個 | 2 | 3 | 4 | 5 |
加工的時間 | 3 | 4 |
經統(tǒng)計發(fā)現零件個數與加工時間具有線性相關關系.
(1)求出關于的線性回歸方程;
(2)試預測加工10個零件需要多少時間.
利用公式:,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若方程|x2﹣2x﹣1|﹣t=0有四個不同的實數根x1、x2、x3、x4,且x1<x2<x3<x4 , 則2(x4﹣x1)+(x3﹣x2)的取值范圍是( )
A.(8,6 )
B.(6 ,4 )
C.[8,4 ]
D.(8,4 ]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2, .
(1)求證:PD⊥平面PAB;
(2)求直線PB與平面PCD所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com