已知函數(shù)
(1)若處的切線方程;
(2)若在區(qū)間上恰有兩個零點,求的取值范圍.

(1)(2)

解析試題分析:(1)對函數(shù)在x=1處求導(dǎo),得到該點處的斜率,應(yīng)用點斜式方程寫出切線方程;(2)求導(dǎo),令分類討論,當(dāng)時,要使在區(qū)間上恰有兩個零點,得到的取值范圍..
試題解析:(1)  
處的切線方程為 
(2)由  
及定義域為,令  
①若上,,上單調(diào)遞增,  
因此,在區(qū)間的最小值為.  
②若上,,單調(diào)遞減;在上,,單調(diào)遞增,因此在區(qū)間上的最小值為  
③若上,,上單調(diào)遞減,  
因此,在區(qū)間上的最小值為.  
綜上,當(dāng)時,;當(dāng)時,;  
當(dāng)時,  
可知當(dāng)時,上是單調(diào)遞增或遞減函數(shù),不可能存在兩個零點.  
當(dāng)時,要使在區(qū)間上恰有兩個零點,則  
 即,此時,.  
所以,的取值范圍為 
考點:求導(dǎo),函數(shù)在一點上的切線方程,分類討論,函數(shù)零點問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

湖北宜昌“三峽人家”風(fēng)景區(qū)為提高經(jīng)濟效益,現(xiàn)對某一景點進行改造升級,從而擴大內(nèi)需,提高旅游增加值,經(jīng)過市場調(diào)查,旅游增加值萬元與投入萬元之間滿足:,為常數(shù),當(dāng)萬元時,萬元;當(dāng)萬元時,萬元.(參考數(shù)據(jù):,,
(Ⅰ)求的解析式;
(Ⅱ)求該景點改造升級后旅游利潤的最大值.(利潤=旅游收入-投入)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),其中為常數(shù)。
(Ⅰ)當(dāng)時,判斷函數(shù)在定義域上的單調(diào)性;
(Ⅱ)若函數(shù)有極值點,求的取值范圍及的極值點。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(1)當(dāng)時,求曲線在點處的切線方程;
(2)若在區(qū)間上是減函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知其中是自然對數(shù)的底 .
(1)若處取得極值,求的值;
(2)求的單調(diào)區(qū)間;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是自然對數(shù)的底數(shù)).
(1)若曲線處的切線也是拋物線的切線,求的值;
(2)當(dāng)時,是否存在,使曲線在點處的切線斜率與 在
上的最小值相等?若存在,求符合條件的的個數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)記的導(dǎo)函數(shù),若不等式上有解,求實數(shù)的取值范圍;
(2)若,對任意的,不等式恒成立.求,)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)試問的值是否為定值?若是,求出該定值;若不是,請說明理由;
(2)定義,其中,求
(3)在(2)的條件下,令.若不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(Ⅰ)當(dāng)a=1時,若曲線y=f(x)在點M (x0,f(x0))處的切線與曲線y=g(x)在點P (x0, g(x0))處的切線平行,求實數(shù)x0的值;
(II)若(0,e],都有f(x)≥g(x)+,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案