我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系中,利用求動點(diǎn)軌跡方程的方法,可以求出過點(diǎn)A(—3,4),且法向量為的直線(點(diǎn)法式)方程為類比以上方法,在空間直角坐標(biāo)系中,經(jīng)過點(diǎn)A(1,2,3)且法向量為的平面(點(diǎn)法式)方程為 。(請寫出化簡后的結(jié)果)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知為單位正交基,且,則向量與向量的坐標(biāo)分別是______________;_________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐PABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=2,BD=2,E是PB上任意一點(diǎn).
(1)求證:AC⊥DE;
(2)已知二面角APBD的余弦值為,若E為PB的中點(diǎn),求EC與平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在棱長為2的正方體中,分別是棱的中點(diǎn),點(diǎn)分別在棱,上移動,且.
當(dāng)時(shí),證明:直線平面;
是否存在,使平面與面所成的二面角為直二面角?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在底面邊長為1,側(cè)棱長為2的正四棱柱中,P是側(cè)棱上的一點(diǎn),.
(1)試確定m,使直線AP與平面BDD1B1所成角為60º;
(2)在線段上是否存在一個(gè)定點(diǎn),使得對任意的m,
⊥AP,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
在空間直角坐標(biāo)系中,設(shè)點(diǎn)是點(diǎn)關(guān)于坐標(biāo)平面的對稱點(diǎn),則線段的
長度等于 ▲ ;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com