已知函數(shù).
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若對(duì)任意的都有恒成立,求實(shí)數(shù)的取值范圍.

解析試題分析:(1)當(dāng)時(shí),,求出導(dǎo)函數(shù),所以曲線處的切線斜率,又,進(jìn)而得出切線方程;
(2)易得函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/bb/7/blnbt1.png" style="vertical-align:middle;" />,對(duì)函數(shù)進(jìn)行求導(dǎo)得,令并在定義域范圍內(nèi)解之,即,再對(duì)其分進(jìn)行分類討論,求得函數(shù)的單調(diào)增區(qū)間,函數(shù)的單調(diào)增區(qū)間在定義域內(nèi)的補(bǔ)集即為函數(shù)的單調(diào)減區(qū)間;
由題意得:對(duì)任意,使得恒成立,只需在區(qū)間內(nèi),,對(duì)進(jìn)行分類討論,從而求出的取值范圍.
(1)時(shí), 
                          
曲線在點(diǎn)處的切線方程       
(2) 
①當(dāng)時(shí), 恒成立,函數(shù)的遞增區(qū)間為 
②當(dāng)時(shí),令,解得(舍去)

x
( 0,)


f’(x)
-
 
+
f(x)

 

 
所以函數(shù)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

是否存在實(shí)數(shù)a,使函數(shù)f(x)=loga(ax2-x)在區(qū)間[2,4]上是增函數(shù)?如果存在,求出a的取值范圍;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù) ().
(1)若,求函數(shù)的極值;
(2)設(shè)
① 當(dāng)時(shí),對(duì)任意,都有成立,求的最大值;
② 設(shè)的導(dǎo)函數(shù).若存在,使成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)為常數(shù).
(1)若函數(shù)處的切線與軸平行,求的值;
(2)當(dāng)時(shí),試比較的大。
(3)若函數(shù)有兩個(gè)零點(diǎn),試證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)當(dāng)a=l時(shí),求的單調(diào)區(qū)間;
(2)若函數(shù)上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(3)令,是否存在實(shí)數(shù)a,當(dāng)(e是自然對(duì)數(shù)的底數(shù))時(shí),函數(shù)g(x)最小值是3,若存在,求出a的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=alnx+bx2圖象上點(diǎn)P(1,f(1))處的切線方程為2x-y-3=0.
(1)求函數(shù)y=f(x)的解析式;
(2)函數(shù)g(x)=f(x)+m-ln4,若方程g(x)=0在[,2]上恰有兩解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=x2-4,設(shè)曲線y=f(x)在點(diǎn)(xn,f(xn))處的切線與x軸的交點(diǎn)為(xn+1,0)(n∈N +),其中xn為正實(shí)數(shù).
(1)用xn表示xn+1;
(2)若x1=4,記an=lg,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項(xiàng)公式;
(3)若x1=4,bn=xn-2,Tn是數(shù)列{bn}的前n項(xiàng)和,證明Tn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù) ,
(1)當(dāng)  時(shí),求函數(shù)  的最小值;
(2)當(dāng) 時(shí),求證:無(wú)論取何值,直線均不可能與函數(shù)相切;
(3)是否存在實(shí)數(shù),對(duì)任意的 ,且,有恒成立,若存在求出的取值范圍,若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(1)若函數(shù)上為減函數(shù),求實(shí)數(shù)的最小值;
(2)若存在,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案