4.已知x,y滿足不等式組$\left\{\begin{array}{l}3x-y-6≤0\\ x-y+2≥0\\ x≥0,y≥0\end{array}\right.$,則z=x+y的最大值為( 。
A.8B.10C.12D.14

分析 作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),通過平移即可求z的最大值.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=x+y得y=-x+z,
平移直線y=-x+z,
由圖象可知當(dāng)直線y=-x+z經(jīng)過點(diǎn)A時(shí),直線y=-x+z的截距最大,
此時(shí)z最大.
由$\left\{\begin{array}{l}{3x-y-6=0}\\{x-y+2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=6}\end{array}\right.$,即A(4,6),
代入目標(biāo)函數(shù)z=x+y得z=4+6=10.
即目標(biāo)函數(shù)z=x+y的最大值為10.
故選:B

點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.利用平移確定目標(biāo)函數(shù)取得最優(yōu)解的條件是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在斜三棱柱ABC-A1B1C1中,點(diǎn)O、E分別是A1C1、AA1的中點(diǎn),AO⊥平面A1B1C1.已知∠BCA=90°,AA1=AC=BC=2.
(1)證明:OE∥平面AB1C1;
(2)證明:AB1⊥A1C;
(3)設(shè)P是棱CC1 的中點(diǎn),求P到側(cè)面ABB1A的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=$\frac{\sqrt{lo{g}_{0.5}x-1}}{2x-1}$的定義域是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.雙曲線$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1的漸近線方程為( 。
A.y=±$\frac{4}{3}$xB.y=±$\frac{3}{4}$xC.y=±$\frac{16}{9}$xD.y=±$\frac{9}{16}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)y=f (x)是定義在R上的偶函數(shù),當(dāng)x≤0時(shí),y=f (x)是減函數(shù),若|x1|<|x2|,則(  )
A.f (x1)-f (x2)<0B.f (x1)-f (x2)>0C.f (x1)+f (x2)<0D.f (x1)+f (x2)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}滿足a1=2,n(an+1-n-1)=(n+1)(an+n)(n∈N*).
(1)求證:數(shù)列{$\frac{a_n}{n}$}是等差數(shù)列,并求其通項(xiàng)公式;
(2)設(shè)bn=$\sqrt{2{a_n}}$-15,求數(shù)列{|bn|}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知點(diǎn)(x,y)滿足不等式組$\left\{{\begin{array}{l}{x-4y+3≤0}\\{2x-y-1≥0}\\{3x+2y-19≤0}\end{array}}\right.$,則$\frac{y}{x}$的最大值為( 。
A.1B.$\frac{2}{5}$C.$\frac{5}{2}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.命題“?x0∈R,2x0-3>1”的否定是(  )
A.?x0∈R,2x0-3≤1B.?x∈R,2x-3>1C.?x∈R,2x-3≤1D.?x0∈R,2x0-3>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)$f(x)=\frac{{-{2^x}+a}}{{{2^{x+1}}+2}}$(a為實(shí)常數(shù))是奇函數(shù),則a=1.

查看答案和解析>>

同步練習(xí)冊答案