某種商品進貨單價為40元,按零售價每個50元售出,能賣出500個.根據(jù)經(jīng)驗如果每個在進價的基礎(chǔ)上漲1元,其銷售量就減少10個,問每個零售價多少元時?銷售這批貨物能取得最大利潤?最大利潤是多少元?
考點:根據(jù)實際問題選擇函數(shù)類型
專題:應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)售價上漲x元,獲得的利潤y元,根據(jù)題意列出利潤的表示式,整理出函數(shù)表示式的最簡形式,得到關(guān)于自變量的二次函數(shù),配方整理得到最值.
解答: 解:設(shè)進價基礎(chǔ)上漲x元,利潤y元,
依題得:y=(600-10x)x=-10x2+600x.(0<x<60)
當(dāng)x=30時,ymax=9000元;
答:當(dāng)零售價每個70元時最大利潤9000元.
點評:本題考查函數(shù)模型的選擇與應(yīng)用,本題解題的關(guān)鍵是理解題意,看出當(dāng)售價增長x元時,賣出的商品的件數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,a4=5,則a3a5的值( 。
A、75B、50C、25D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(
π
6
+θ)=
1
2
,則sin(
4
3
π-θ)的值為( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
a
x
+xlnx,g(x)=x3-x2-3.
(Ⅰ)求g(x)在區(qū)間[0,2]上的最大值、最小值;
(Ⅱ)求證:當(dāng)a≥1時,對?s、t∈(0,2],都有f(s)≥g(t).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為(-∞,0)∪(0,+∞),且滿足條件:①f(xy)=f(x)+f(y);②f(2)=1;③當(dāng)x>1時,f(x)>0.
(1)求證:f(x)為偶函數(shù);
(2)討論函數(shù)的單調(diào)性;
(3)求不等式f(x)+f(x-3)≤2的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx-ax,g(x)=ex-ax,其中a為實數(shù),若f(x)在(1,+∞)上是單調(diào)減函數(shù),且g(x)在(1,+∞)上有最小值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

①求函數(shù)y=
x-1
+
1
x2-5x+6
的定義域; 
②計算8 -
2
3
+lg
1
4
-lg25的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sin2ωx+6cos2ωx-3(ω>0)在一個周期內(nèi)的圖象如圖所示,其中A為圖象的最高點,B、C為圖象與軸的交點,且△ABC為正三角形.
(Ⅰ)求ω的值;
(Ⅱ)若f(x0)=
6
3
5
,且x0∈(
2
3
8
3
),求f(x0+1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α∈(0,π)且滿足sinα+cosα=
1
5
,
(Ⅰ)求
sin(π-α)+cos(-α)
tan(π+α)
的值;
(Ⅱ)求
1
2
sin2α+cos2α+1的值.

查看答案和解析>>

同步練習(xí)冊答案