設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面,則下列命題正確的是(  )
A、若m⊥n,m⊥α,n∥β,則α∥β
B、若m∥α,n∥β,α∥β則m∥n
C、若m∥n,m∥α,n∥β,則α∥β
D、若m⊥α,n∥β,α∥β,則m⊥n
考點(diǎn):命題的真假判斷與應(yīng)用
專題:空間位置關(guān)系與距離
分析:本題考查平面的基本性質(zhì)及推論,考察空間點(diǎn)線面的位置關(guān)系,要依據(jù)4個公理以及公理2的3個推論判斷,首先畫出圖象,然后利用圖象判斷.否定時舉出反例即可,使用排除法.
解答: 解:A、m⊥n,m⊥α,n∥β,如圖,α與β相交,故A錯誤,
   B、若m∥α,n∥β,α∥β,如圖m,n相交,故B錯誤,
   C、若m∥n,m∥α,n∥β, α∥β,故C錯誤,
   D、若m⊥α,α∥β,則m⊥β,又n∥β,則m⊥n,正確.
故選:D.
點(diǎn)評:解此類題,關(guān)鍵是對題中命題所涉及的相關(guān)知識掌握理解,且能根據(jù)它們進(jìn)行嫻熟的推理判斷得出命題的正誤判斷.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2xlnx+x2-ax+3,其中a∈R.
(Ⅰ)設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線2x-y+1=0平行,求a的值;
(Ⅱ)若f(x)≤0在x∈[
1
e
,e]
(e=2.718…)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+px+q,|f(x)|>2在區(qū)間(1,5)無解,求所有的有序?qū)崝?shù)對(p,q).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等腰梯形ABCD中,AB∥CD,且AB>CD.設(shè)以A,B為焦點(diǎn)且過點(diǎn)D的雙曲線的離心率為2,以C,D為焦點(diǎn)且過點(diǎn)A的橢圓的離心率e等于( 。
A、
1
2
B、
2
2
C、
3
2
D、
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M經(jīng)過第一象限,與y軸相切于點(diǎn)O(0,0),且圓M上的點(diǎn)到x軸的最大距離為2,過點(diǎn)P(0,-1)作直線l.
(1)求圓M的標(biāo)準(zhǔn)方程;
(2)當(dāng)直線l與圓M相切時,求直線l的方程;
(3)當(dāng)直線l與圓M相交于A、B兩點(diǎn),且滿足向量
PA
PB
,λ∈[2,+∞)時,求|AB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,極點(diǎn)為A,已知“葫蘆”型封閉曲線Ω由圓弧ACB和圓弧BDA組成.已知B(4,
π
2
),C(2
2
,
π
4
),D(4
2
,
4

(1)求圓弧ACB和圓弧BDA的極坐標(biāo)方程;
(2)求曲線Ω圍成的區(qū)域面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在棱長為l的正方體ABCD-ABCD的面對角線AB上存在一點(diǎn)P使得AP+DP取得最小值,則此最小值為( 。
A、2
B、
6
+
2
2
C、2+
2
D、
2+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P的坐標(biāo)(x,y)滿足
x-3y+5≤0
2x-y≥0
x+2y-10≤0
,過點(diǎn)P的直線l與圓C:x2+y2=36相交于A、B兩點(diǎn),則弦AB長的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程ln(x+1)-
2
x
=0,(x>0)的根存在的大致區(qū)間是( 。
A、(0,1)
B、(1,2)
C、(2,e)
D、(3,4)

查看答案和解析>>

同步練習(xí)冊答案