【答案】
分析:(Ⅰ)直接求兩個函數(shù)乘積的導(dǎo)函數(shù),令其等于0,求出極值點,判斷單調(diào)性,進而求出最小值;
(Ⅱ)f(x)在[-1,1]上是單調(diào)函數(shù),即其導(dǎo)函數(shù)恒大于等于或小于等于零,轉(zhuǎn)化為不等式恒成立問題,再通過構(gòu)造函數(shù)轉(zhuǎn)化為求函數(shù)最值,利用導(dǎo)數(shù)的方法即可解決.
解答:解:(1)令f'(x)=0即[x
2-2(a-1)x-2a]e
x=0∴x
2-2(a-1)x-2a=0
∵△=[2(a-1)]
2+8a=4(a
2+1)>0∴x
1=a-1-
,x
2=a-1+
又∵當(dāng)x∈(-∞,a-1-
)時,f'(x)>0;
當(dāng)x∈(a-1-
,a-1+
)時,f'(x)<0;
當(dāng)x∈(a-1+
,+∞)時,f'(x)>0.
列表如下:
∴x
1,x
2分別為f(x)的極大值與極小值點.
又∵
f(x)=0;當(dāng)x→+∞時,f(x)→+∞.
而f(a-1+
)=2(1-
)
<0.
∴當(dāng)x=a-1+
時,f(x)取得最小值.
(2)f(x)在[-1,1]上單調(diào),則f'(x)≥0(或≤0)在[-1,1]上恒成立.
而f'(x)=[x
2-2(a-1)x-2a]e
x,令g(x)=x
2-2(a-1)x-2a=[x-(a-1)]
2-(a
2+1).
∴f'(x)≥0(或≤0)即g(x)≥0(或≤0).
當(dāng)g(x)≥0在[-1,1]上恒成立時,有
①當(dāng)-1≤a-1≤1即0≤a≤2時,g(x)
min=g(a-1)=-(a
2+1)≥0(舍);
②當(dāng)a-1>1即a≥2時,g(x)
min=g(1)=3-4a≥0∴a≤
(舍).
當(dāng)g(x)≤0在[-1,1]上恒成立時,有
①當(dāng)-1≤a-1≤0即0≤a≤1時,g(x)
max=g(1)=3-4a≤0,∴
≤a≤1;
②當(dāng)0<a-1≤1即1<a≤2時,g(x)
max=g(-1)=-1≤0,∴1<a≤2;
③當(dāng)1<a-1即a>2時,g(x)
max=g(-1)=-1≤0,∴a>2.
故a∈[
,+∞).
點評:本題考查函數(shù)單調(diào)性的性質(zhì),導(dǎo)數(shù)在函數(shù)最大值、最小值中的應(yīng)用,靈活運用分類討論思想與轉(zhuǎn)化思想是解決此類題目的關(guān)鍵,屬于中檔題.