已知向量數(shù)學公式、數(shù)學公式不共線,若數(shù)學公式,且A、B、C三點共線,則關于實數(shù)λ1、λ2一定成立的關系式為


  1. A.
    λ12=1
  2. B.
    λ12=-1
  3. C.
    λ1λ2=1
  4. D.
    λ12=1
C
分析:先求A、B、C三點共線的充要條件,我們要先根據(jù)已知條件a、b是不共線的向量,判斷λ與μ滿足的關系;并以此關系為已知條件,看能不能反推回來得到A、B、C三點共線.如果兩個過程都是可以的,該關系式即為所求.
解答:由于 ,有公共點A,
∴若A、B、C三點共線
共線
即存在一個實數(shù)t,使 =t

消去參數(shù)t得:λ1λ2=1;
反之,當λ1λ2=1時

此時存在實數(shù) 使 =
共線
又由 有公共點A,
∴A、B、C三點共線
故A、B、C三點共線的充要條件是λ1λ2=1.
故選C.
點評:判斷充要條件的方法是:①若p?q為真命題且q?p為假命題,則命題p是命題q的充分不必要條件;②若p?q為假命題且q?p為真命題,則命題p是命題q的必要不充分條件;③若p?q為真命題且q?p為真命題,則命題p是命題q的充要條件;④若p?q為假命題且q?p為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關系.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知兩個不共線的向量
a
,
b
的夾角為θ,且|
a
|=3,|
b
|=1,x為正實數(shù).
(1)若
a
+2
b
a
-4
b
垂直,求tanθ;
(2)若θ=
π
6
,求|x
a
-
b
|的最小值及對應的x的值,并指出此時向量
a
與x
a
-
b
的位置關系;
(3)若θ為銳角,對于正實數(shù)m,關于x的方程|x
a
-
b
|=|m
a
|有兩個不同的正實數(shù)解,且x≠m,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知向量數(shù)學公式數(shù)學公式不共線,數(shù)學公式=k數(shù)學公式-數(shù)學公式,數(shù)學公式=2數(shù)學公式+數(shù)學公式,若數(shù)學公式數(shù)學公式,則實數(shù)k的值為


  1. A.
    數(shù)學公式
  2. B.
    k=-2
  3. C.
    k=2
  4. D.
    數(shù)學公式

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖南省永州市藍山二中高三第四次聯(lián)考數(shù)學試卷(文科)(解析版) 題型:選擇題

已知向量、不共線,=k-,=2+,若,則實數(shù)k的值為( )
A.
B.k=-2
C.k=2
D.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年四川省南充市高考數(shù)學二模試卷(理科)(解析版) 題型:選擇題

已知向量、不共線,若,且A、B、C三點共線,則關于實數(shù)λ1、λ2一定成立的關系式為( )
A.λ12=1
B.λ12=-1
C.λ1λ2=1
D.λ12=1

查看答案和解析>>

同步練習冊答案