3.雙曲線3my2-mx2=3的一個(gè)焦點(diǎn)是(0,2),則m的值為( 。
A.-1B.1C.-2D.2

分析 先根據(jù)題意,將方程化為標(biāo)準(zhǔn)方程,再利用c2=a2+b2,即可求得結(jié)論.

解答 解:把方程化為標(biāo)準(zhǔn)形式$\frac{{y}^{2}}{\frac{1}{m}}-\frac{{x}^{2}}{\frac{3}{m}}$=1,
∴b2=$\frac{3}{m}$,a2=$\frac{1}{m}$.
∴c2=$\frac{3}{m}+\frac{1}{m}$=4,解得m=1.
故選:A.

點(diǎn)評 求圓錐曲線的方程關(guān)鍵先判斷出焦點(diǎn)的位置、考查雙曲線中三參數(shù)的關(guān)系為c2=a2+b2,注意與橢圓中三個(gè)參數(shù)關(guān)系的區(qū)別.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知命題:
①若A、B、C、D是空間任意四點(diǎn),則有$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CD}$+$\overrightarrow{DA}$=$\overrightarrow{0}$;
②$\overrightarrow$≠$\overrightarrow{0}$,則$\overrightarrow{a}$和$\overrightarrow$共線的充要條件是:?λ∈R,使$\overrightarrow{a}$=λ$\overrightarrow$;
③若$\overrightarrow{a}$和$\overrightarrow$共線,則$\overrightarrow{a}$與$\overrightarrow$所在直線平行;
④對空間任意一點(diǎn)O與不共線的三點(diǎn)A、B、C,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$(其中x、y、z∈R),且x+y+z=1,則P、A、B、C四點(diǎn)共面.則上述命題中正確命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.復(fù)數(shù)$\frac{{{{({1+i})}^2}}}{i^3}$=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)判斷下列各角是第幾象限角:
①606°②-950°
(2)寫出與-457°角終邊相同的角的集合,并指出它是第幾象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.等比數(shù)列{an}中,若a1+a2=3,a5+a6=48,則a3+a4=( 。
A.12B.±12C.6D.±6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)全集U=R,集合A={x||x-1|≤2},B={x|x<1},則集合∁U(A∩B)=( 。
A.{x|-1<x≤3}B.{x|x≥1或x<-1}C.{x|x>3}D.{x|-1≤x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.符號$\sum_{i=1}^n{a_i}$表示數(shù)列{an}的前n項(xiàng)和(即$\sum_{i=1}^n{a_i}={a_1}+{a_2}+…+{a_n}$).已知數(shù)列{an}滿足a1=0,an≤an+1≤an+1(n∈N*),記${S_n}=\sum_{k=1}^n{{{(-1)}^{k-1}}{a^{a_k}}}(0<a<1)$,若S2016=0,則當(dāng)$\sum_{k=1}^{2016}{{a^{a_k}}}$取最小值時(shí),a2016=1007.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.用秦九韶算法計(jì)算多項(xiàng)f(x)=3x6+4x5-5x4-6x3+7x2-8x+1時(shí),當(dāng)x=0.4時(shí)的值時(shí),需要做乘法和加法的次數(shù)分別是(  )
A.6,6B.5,6C.5,5D.6,5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若數(shù)列{an}的前n項(xiàng)和為${S_n}=\frac{2}{3}{a_n}+1$,則{an}的通項(xiàng)公式是an=3•(-2)n-1

查看答案和解析>>

同步練習(xí)冊答案