6.某機構(gòu)為了解某地區(qū)中學生在校月消費情況,隨機抽取了100名中學生進行調(diào)查.如圖是根據(jù)調(diào)查的結(jié)果繪制的學生在校月消費金額的頻率分布直方圖.已知[350,450),[450,550),[550,650)三個金額段的學生人數(shù)成等差數(shù)列,將月消費金額不低于550元的學生稱為“高消費群”.

(Ⅰ)求m,n的值,并求這100名學生月消費金額的樣本平均數(shù)$\overline x$(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(Ⅱ)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有90%的把握認為“高消費群”與性別有關(guān)?
高消費群非高消費群合計
1050
合計
(參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P(K2≥k)0.100.050.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828

分析 (Ⅰ)利用已知條件列出方程組求解m、n即可.
(Ⅱ)利用已知條件直接列出聯(lián)列表,然后情況k2,即可判斷能否有90%的把握認為“高消費群”與性別有關(guān).

解答 (本題滿分12分)
解:(Ⅰ)由題意知 100(m+n)=0.6且2m=n+0.0015
解得m=0.0025,n=0.0035…(3分)
所求平均數(shù)為:$\overline x=300×0.15+400×0.35+500×0.25+600×0.15+700×0.10=470$(元) …(6分)
(Ⅱ)根據(jù)頻率分布直方圖得到如下2×2列聯(lián)表:

高消費群非高消費群合計
153550
104050
合計2575100
…(9分)
根據(jù)上表數(shù)據(jù)代入公式可得${K^2}=\frac{{100×{{(15×40-35×10)}^2}}}{25×75×50×50}=\frac{100}{75}≈1.33<2.706$
所以沒有90%的把握認為“高消費群”與性別有關(guān).     …(12分)

點評 本題考查頻率分布直方圖,聯(lián)列表以及獨立檢驗的應(yīng)用,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知圓C的周長被y軸平分,且經(jīng)過點A($\sqrt{3}$,0),B(0,3).
(1)求圓C的方程;
(2)過原點O作兩條直線l1:y=k1x交圓C于點E(x1,y1)、F(x2,y2),作直線l2:y=k2x交圓C于點G(x3,y3)、H(x4,y4)(其中y2>0,y4>0),設(shè)EH交x軸于點Q,GF交x軸于點R(如圖)
①求證:$\frac{{k}_{1}{x}_{1}{x}_{2}}{{x}_{1}+{x}_{2}}$=$\frac{{k}_{2}{x}_{3}{x}_{4}}{{x}_{3}+{x}_{4}}$;
②求證:|OQ|=|OR|.(證明過程不考慮EH或GF垂直于x軸的情形)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知logx27=$\frac{3}{4}$,則x=81.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知曲線C1的參數(shù)方程為$\left\{{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}}\right.$(其中θ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρcosθ-ρsinθ+1=0.
(1)分別寫出曲線C1與曲線C2的普通方程;
(2)若曲線C1與曲線C2交于A,B兩點,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知把函數(shù)$f(x)=sinx+\sqrt{3}cosx$的圖象向右平移$\frac{π}{4}$個單位,再把橫坐標擴大到原來的2倍,得到函數(shù)g(x),則函數(shù)g(x)的一條對稱軸為(  )
A.$x=\frac{π}{6}$B.$x=\frac{5π}{6}$C.$x=\frac{π}{12}$D.$x=\frac{7π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.己知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的短軸長為6,焦點F1(-c,0)到長軸的兩個端點的距離之比為$\frac{1}{9}$.
(I)求橢圓C的離心率及橢圓C的標準方程;
(Ⅱ)若橢圓C上一點P(m,n),滿足PF1⊥PF2,當n>0時,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.(Ⅰ)解不等式|3-2x|>5;
(Ⅱ)若?x∈[1,2],x-|x-a|≤1恒成立,求常數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=ax-1-lnx.(a∈R)
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)在x=2處的切線斜率為$\frac{1}{2}$,不等式f(x)≥bx-2對任意x∈(0,+∞)恒成立,求實數(shù)b的取值范圍;
(Ⅲ)證明對于任意n∈N,n≥2有:$\frac{{ln{2^2}}}{2^2}$+$\frac{{ln{3^2}}}{3^2}$+$\frac{{ln{4^2}}}{4^2}$+…+$\frac{{ln{n^2}}}{n^2}$<$\frac{{2{n^2}-n-1}}{2(n+1)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=ex+ln(x+1)-ax,a∈R.
(1)g(x)為f(x)的導函數(shù),討論g(x)的零點個數(shù);
(2)當x≥0時,不等式ex+(x+1)ln(x+1)≥$\frac{1}{2}$ax2+ax+1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案