(本小題滿(mǎn)分15分)
已知函數(shù).
(Ⅰ) 若曲線在點(diǎn)處的切線與曲線有且只有一個(gè)公共點(diǎn),求 的值;
(Ⅱ) 求證:函數(shù)存在單調(diào)遞減區(qū)間,并求出單調(diào)遞減區(qū)間的長(zhǎng)度 的取值范圍.
(Ⅰ).(Ⅱ)以函數(shù)的遞減區(qū)間長(zhǎng)度的取值范圍是.
本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中 的運(yùn)用。
(1)先求解函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223218839526.png" style="vertical-align:middle;" />,函數(shù)導(dǎo)數(shù)
所以曲線在點(diǎn)處的切線方程為:
因?yàn)榍芯與曲線有唯一的公共點(diǎn),
所以方程有且只有一個(gè)實(shí)數(shù)解,顯然是方程的一個(gè)解.
構(gòu)造函數(shù)令,則
對(duì)參數(shù)m討論得到結(jié)論。
(2))因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232232190571350.png" style="vertical-align:middle;" />.
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223219088998.png" style="vertical-align:middle;" />且對(duì)稱(chēng)軸為,
,
所以方程內(nèi)有兩個(gè)不同實(shí)根
結(jié)合韋達(dá)定理得到結(jié)論。
解:(Ⅰ)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223218839526.png" style="vertical-align:middle;" />,
所以曲線在點(diǎn)處的切線方程為:
因?yàn)榍芯與曲線有唯一的公共點(diǎn),
所以方程有且只有一個(gè)實(shí)數(shù)解,顯然是方程的一個(gè)解.
,則
①當(dāng)時(shí),,
所以上單調(diào)遞增,即是方程唯一實(shí)數(shù)解.
②當(dāng)時(shí),由,
在區(qū)間上,;在區(qū)間上,;
所以函數(shù)處有極大值,且
而當(dāng),因此內(nèi)也有一個(gè)解.
即當(dāng)時(shí),不合題目的條件.
綜上討論得.……………………………………………………………………………8分
(Ⅱ).
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223219088998.png" style="vertical-align:middle;" />且對(duì)稱(chēng)軸為,
,
所以方程內(nèi)有兩個(gè)不同實(shí)根,
的解集為
所以函數(shù)的單調(diào)遞減區(qū)間為.

由于,所以
所以函數(shù)的遞減區(qū)間長(zhǎng)度的取值范圍是.……………………15分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)
已知函數(shù),其中常數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的極值點(diǎn);
(Ⅱ)令,若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍;
(Ⅲ)設(shè)定義在D上的函數(shù)在點(diǎn)處的切線方程為當(dāng)時(shí),若D內(nèi)恒成立,則稱(chēng)P為函數(shù)的“特殊點(diǎn)”,請(qǐng)你探究當(dāng)時(shí),函數(shù)是否存在“特殊點(diǎn)”,若存在,請(qǐng)最少求出一個(gè)“特殊點(diǎn)”的橫坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù).
(1)若函數(shù)是定義域上的單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(2)求函數(shù)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題12分)已知函數(shù)處取得極值.
(1) 求;
(2 )設(shè)函數(shù),如果在開(kāi)區(qū)間上存在極小值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知定義在R上的函數(shù)f(x)=x2(ax-3),其中a為常數(shù).
(Ⅰ)若x=1是函數(shù)f(x)的一個(gè)極值點(diǎn),求a的值;
(Ⅱ)若函數(shù)f(x)在區(qū)間(-1,0)上是增數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

f(x)=-x2bln(x+2)在(-1,+∞)上是減函數(shù),則b的取值范圍是
A.[-1,+∞) B.(-1,+∞)C.(-∞,-1] D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)在下列哪個(gè)區(qū)間內(nèi)是增函數(shù)(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)a=﹣2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若g(x)= +1,+∞)上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)處取得極值,
(1)求實(shí)數(shù)的值;
(2)若關(guān)于的方程在區(qū)間上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案