【題目】數(shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半這條直線被后人稱之為三角形的歐拉線的頂點,,且的歐拉線的方程為,則頂點C的坐標(biāo)為  

A. B. C. D.

【答案】A

【解析】

設(shè)出點C的坐標(biāo),由重心坐標(biāo)公式求得重心,代入歐拉線得一方程,求出AB的垂直平分線,和歐拉線方程聯(lián)立求得三角形的外心,由外心到兩個頂點的距離相等得另一方程,兩方程聯(lián)立求得點C的坐標(biāo).

設(shè)Cmn),由重心坐標(biāo)公式得,

三角形ABC的重心為(),

代入歐拉線方程得:2=0,

整理得:mn+4=0

AB的中點為(1,2),直線AB的斜率k2,

AB的中垂線方程為y﹣2x﹣1),即x﹣2y+3=0.

聯(lián)立,解得

∴△ABC的外心為(﹣1,1).

則(m+1)2+(n﹣1)2=32+12=10,

整理得:m2+n2+2m﹣2n=8

聯(lián)立①②得:m=﹣4,n=0m=0,n=4.

當(dāng)m=0,n=4B,C重合,舍去.

∴頂點C的坐標(biāo)是(﹣4,0).

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為的正方體中,點、是棱、的中點, 是底面上(含邊界)一動點,滿足,則線段長度的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PPD//平面MAC,PA=PD=,AB=4.

(I)求證:MPB的中點;

(II)求二面角B-PD-A的大;

(III)求直線MC與平面BDP所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=lg(ax-bx)(a>1>b>0).

(Ⅰ)求fx)的定義域;

(Ⅱ)當(dāng)x∈(1,+∞)時,fx)的值域為(0,+∞),且f(2)=lg2,求實數(shù)a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在(0,+∞)上的函數(shù)fx)滿足f(2x)=x2-2x

(Ⅰ)求函數(shù)y=fx)的解析式;

(Ⅱ)若關(guān)于x的方程fx)=在(1,4)上有實根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某食品企業(yè)一個月內(nèi)被消費者投訴的次數(shù)用表示.據(jù)統(tǒng)計,隨機變量的概率分布如下表所示.

0

1

2

3

0.1

0.3

(1)求的值和的數(shù)學(xué)期望;

(2)假設(shè)一月份與二月份被消費者投訴的次數(shù)互不影響,求該企業(yè)在這兩個月內(nèi)共被消費者投訴2次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)fx)對任意實數(shù)x滿足fx+2)=f(-x+2),又f(0)=3,f(2)=1.

(1)求函數(shù)fx)的解析式;

(2)若fx)在[0,m]上的最大值為3,最小值為1,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為奇函數(shù),且x=-1處取得極大 2

1)求f(x)的解析式;

2)過點A(1,t) 可作函數(shù)f(x)圖像的三條切線,求實數(shù)t的取值范圍;

3)若對于任意的恒成立,求實數(shù)m取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過點,和直線相切,且圓心在直線上.

(1)求圓的方程;

(2)已知直線經(jīng)過原點,并且被圓截得的弦長為2,求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案