20.若x∈R,則“-2≤x≤3”是“|x|<2”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 利用充分條件和必要條件的定義進行判斷.

解答 解:由|x|<2,得-2<x<2,
“-2≤x≤3”是“|x|<2”必要不充分條件.
故選B.

點評 本題主要考查充分條件和必要條件的判斷和應(yīng)用,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.四棱錐P-ABCD中,PC=AB=1,BC=a,∠ABC=60°,底面ABCD為平行四邊形,PC⊥平面ABCD,點M,N分別為AD,PC的中點.
(1)求證:MN∥平面PAB;
(2)若∠PAB=90°,求二面角B-AP-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{a}{x}$+lnx-1.
(1)當(dāng)a=2時,求f(x)在(1,f(1))處的切線方程;
(2)若a>0,且對x∈(0,2e]時,f(x)>0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知集合A={x|x≤-1或x≥3},B={x|1≤x≤6},C={x|m+1≤x≤2m}
(Ⅰ)求A∩B,(∁RA)∪B;
(Ⅱ)若B∪C=B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,已知tanA=$\frac{1}{2}$,cosB=$\frac{3\sqrt{10}}{10}$,若△ABC最長邊為$\sqrt{10}$,則最短邊長為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.過橢圓$\frac{{y}^{2}}{9}$+x2=1內(nèi)的一點P($\frac{1}{2}$,$\frac{1}{2}$)的弦,恰好被點P平分,則這條弦所在的直線方程為( 。
A.9x-y-4=0B.x+y+5=0C.2x+y-2=0D.9x+y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)曲線y=a(x-1)-lnx在點(1,0)處的切線方程為y=2x-2,則a=( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=(1-ax)ln(x+1)-bx,其中a和b是實數(shù),曲線y=f(x)恒與x軸相切于坐標(biāo)原點.
(1)求常數(shù)b的值;
(2)當(dāng)a=1時,討論函數(shù)f(x)的單調(diào)性;
(3)當(dāng)0≤x≤1時關(guān)于x的不等式f(x)≥0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)兩正數(shù)a,b(a≠b)滿足a2+ab+b2=a+b,則a+b的取值范圍是( 。
A.(1,+∞)B.(1,$\frac{4}{3}$)C.[1,$\frac{4}{3}$]D.(0,1)

查看答案和解析>>

同步練習(xí)冊答案