分析 (1)利用兩角和與差的正切函數(shù)公式求得tanα的值,然后利用誘導(dǎo)公式得到tan(α-π)=tanα.
(2)將所求關(guān)系式轉(zhuǎn)化為$\frac{tanα}{ta{n}^{2}α+1}$,再將tanα=2代入計(jì)算即可.
解答 解:(1)由$tan(α+\frac{π}{4})=-3$,得:
$\frac{tanα+1}{1-tanα}=-3$,
解得tanα=2,
所以tan(α-π)=tanα=2;
(2)$sinαcosα=\frac{sinαcosα}{{{{sin}^2}α+{{cos}^2}α}}=\frac{tanα}{{{{tan}^2}α+1}}=\frac{2}{5}$.
點(diǎn)評 本題考查兩角和與差的三角函數(shù),考查計(jì)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | $\frac{4}{3}$ | C. | $\frac{18}{5}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=($\sqrt{x}$)2與y=x | B. | y=$\sqrt{{x}^{2}}$與 y=($\sqrt{x}$)2 | C. | y=$\root{3}{{x}^{3}}$與y=$\frac{{x}^{2}}{x}$ | D. | y=($\root{3}{{x}^{3}}$)3與y=x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=2sin(2x+\frac{π}{6})+1$ | B. | $y=sin(2x+\frac{π}{3})+1$ | C. | $y=2sin(\frac{1}{2}x+\frac{π}{6})+2$ | D. | $y=sin(2x+\frac{π}{3})+2$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
贊同 | 反對 | 合計(jì) | |
男 | 50 | 150 | 200 |
女 | 30 | 170 | 200 |
合計(jì) | 80 | 320 | 400 |
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com