【題目】如圖,四棱錐的底面是矩形,底面ABCD,P為BC邊的中點,SB與平面ABCD所成的角為,且,.
1求證:平面SAP;
2求二面角的余弦的大。
【答案】(1)見證明;(2)
【解析】
1欲證平面SAP,根據(jù)直線與平面垂直的判定定理可知只需證PD與平面SAP內(nèi)兩相交直線垂直,根據(jù)題意可知是SB與平面ABCD所成的角,根據(jù)勾股定理可知,根據(jù)線面垂直的性質(zhì)可知,而滿足定理所需條件;
2設(shè)Q為AD的中點,連接PQ,根據(jù),,則是二面角的平面角,在中,求出二面角的余弦即可.
1
證明:因為底面ABCD,
所以,是SB與平面ABCD所成的角
由已知,所以易求得,
又因為,所以,所以
因為底面ABCD,平面ABCD,
所以,
由于所以平面
2設(shè)Q為AD的中點,連接PQ,
由于底面ABCD,且平面SAD,
則平面平面
,平面SAD,平面SAD,.
過Q作,垂足為R,連接PR,則面QPR.
又面QPR,,是二面角的平面角
容易證明∽,則.
因為,,,
所以
在中,因為,,
所以
所以二面角的余弦為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩個班級進行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績,得到如下所示的列聯(lián)表:
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
甲班 | 10 | ||
乙班 | 30 | ||
總計 |
已知在全部105人中隨機抽取1人,成績優(yōu)秀的概率為,則下列說法正確的是( )
A. 列聯(lián)表中的值為30,的值為35
B. 列聯(lián)表中的值為15,的值為50
C. 根據(jù)列聯(lián)表中的數(shù)據(jù),若按的可靠性要求,能認為“成績與班級有關(guān)系”
D. 根據(jù)列聯(lián)表中的數(shù)據(jù),若按的可靠性要求,不能認為“成績與班級有關(guān)系”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】獨立性檢驗中,假設(shè):運動員受傷與不做熱身運動沒有關(guān)系.在上述假設(shè)成立的情況下,計算得的觀測值.下列結(jié)論正確的是
A. 在犯錯誤的概率不超過0.01的前提下,認為運動員受傷與不做熱身運動有關(guān)
B. 在犯錯誤的概率不超過0.01的前提下,認為運動員受傷與不做熱身運動無關(guān)
C. 在犯錯誤的概率不超過0.005的前提下,認為運動員受傷與不做熱身運動有關(guān)
D. 在犯錯誤的概率不超過0.005的前提下,認為運動員受傷與不做熱身運動無關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),在以原點為極點, 軸正半軸為極軸的極坐標系中,直線的極坐標方程為.
(1)求曲線的普通方程和直線的傾斜角;
(2)設(shè)點,直線和曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),已知函數(shù),.
(Ⅰ)設(shè),求在上的最大值.
(Ⅱ)設(shè),若的極大值恒小于0,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點F1為橢圓E:(a>b>0)的左焦點,且兩焦點與短軸的一個頂點構(gòu)成一個等腰直角三角形,直線與橢圓E有且僅有一個交點M.
(1)求橢圓E的方程;
(2)設(shè)直線與y軸交于P,過點P的直線l與橢圓E交于不同的兩點A,B,若λ|PM|2=|PA|·|PB|,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計圖,下列對統(tǒng)計圖理解錯誤的是( )
A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬件
B. 2018年1~4月的業(yè)務(wù)量同比增長率均超過50%,在3月底最高
C. 從兩圖來看,2018年1~4月中的同一個月的快遞業(yè)務(wù)量與收入的同比增長率并不完全一致
D. 從1~4月來看,該省在2018年快遞業(yè)務(wù)收入同比增長率逐月增長
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知可以用一系列半徑為且彼此不重疊的圓盤覆蓋平面上的所有格點(在平面直角坐標系中,橫、縱坐標都是整數(shù)的點為格點),則______4 (填“大于~小于”或“等于”).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)(a為常數(shù),且)在處取得極值.
(1)求實數(shù)a的值,并求的單調(diào)區(qū)間;
(2)關(guān)于x的方程在上恰有1個實數(shù)根,求實數(shù)b的取值范圍;
(3)求證:當(dāng)時,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com