【題目】已知的定義域?yàn)?/span>,使得不等式成立,關(guān)于的不等式的解集記為.

(1)若為真,求實(shí)數(shù)的取值集合;

(2)在(1)的條件下,若的充分不必要條件,求實(shí)數(shù)的取值范圍.

【答案】(1);(2)

【解析】

(1)先確定p,q為真的等價(jià)條件,若為真則 真,求交集即可;

(2)利用xA是“xB”的充分不必要條件,即AB,確定條件關(guān)系,即可求實(shí)數(shù)m的取值范圍.

(1) fx的定義域?yàn)?/span>R,則ax2ax+≥0對(duì)任意實(shí)數(shù)x都成立,

當(dāng)a=0時(shí)顯然滿足,當(dāng)a≠0時(shí),有,解得0<a≤1.

綜上:

,使得不等式成立,∴即a

為真,即真, 真,

(2)①,即,此時(shí)

的充分不必要條件

;

,即,此時(shí) 不符合題意。

③①,即,此時(shí)

的充分不必要條件

無(wú)解;

綜上所述:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“工資條里顯紅利,個(gè)稅新政入民心”.隨著2019年新年鐘聲的敲響,我國(guó)自1980年以來(lái),力度最大的一次個(gè)人所得稅(簡(jiǎn)稱(chēng)個(gè)稅)改革迎來(lái)了全面實(shí)施的階段.某從業(yè)者為了解自己在個(gè)稅新政下能享受多少稅收紅利,繪制了他在26歲-35歲(2009年-2018年)之間各年的月平均收入(單位:千元)的散點(diǎn)圖:(注:年齡代碼1-10分別對(duì)應(yīng)年齡26-35歲)

(1)由散點(diǎn)圖知,可用回歸模型擬合的關(guān)系,試根據(jù)有關(guān)數(shù)據(jù)建立關(guān)于的回歸方程;

(2)如果該從業(yè)者在個(gè)稅新政下的專(zhuān)項(xiàng)附加扣除為3000元/月,試?yán)茫?)的結(jié)果,將月平均收入視為月收入,根據(jù)新舊個(gè)稅政策,估計(jì)他36歲時(shí)每個(gè)月少繳納的個(gè)人所得稅.

附注:參考數(shù)據(jù):,,

,,,其中:取,.

參考公式:回歸方程中斜率和截距的最小二乘估計(jì)分別為,.

新舊個(gè)稅政策下每月應(yīng)納稅所得額(含稅)計(jì)算方法及稅率表如下:

舊個(gè)稅稅率表(個(gè)稅起征點(diǎn)3500元)

新個(gè)稅稅率表(個(gè)稅起征點(diǎn)5000元)

繳稅

級(jí)數(shù)

每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn)

稅率

每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn)專(zhuān)項(xiàng)附加扣除

稅率

1

不超過(guò)1500元的都分

3

不超過(guò)3000元的都分

3

2

超過(guò)1500元至4500元的部分

10

超過(guò)3000元至12000元的部分

10

3

超過(guò)4500元至9000元的部分

20

超過(guò)12000元至25000元的部分

20

4

超過(guò)9000元至35000元的部分

25

超過(guò)25000元至35000元的部分

25

5

超過(guò)35000元至55000元的部分

30

超過(guò)35000元至55000元的部分

30

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某市高三數(shù)學(xué)復(fù)習(xí)備考情況,該市教研機(jī)構(gòu)組織了一次檢測(cè)考試,并隨機(jī)抽取了部分高三理科學(xué)生數(shù)學(xué)成績(jī)繪制如圖所示的頻率分布直方圖.

(1)根據(jù)頻率分布直方圖,估計(jì)該市此次檢測(cè)理科數(shù)學(xué)的平均成績(jī);(精確到個(gè)位)

(2)研究發(fā)現(xiàn),本次檢測(cè)的理科數(shù)學(xué)成績(jī)近似服從正態(tài)分布,約為),按以往的統(tǒng)計(jì)數(shù)據(jù),理科數(shù)學(xué)成績(jī)能達(dá)到自主招生分?jǐn)?shù)要求的同學(xué)約占.

(。估計(jì)本次檢測(cè)成績(jī)達(dá)到自主招生分?jǐn)?shù)要求的理科數(shù)學(xué)成績(jī)大約是多少分?(精確到個(gè)位)

(ⅱ)從該市高三理科學(xué)生中隨機(jī)抽取人,記理科數(shù)學(xué)成績(jī)能達(dá)到自主招生分?jǐn)?shù)要求的人數(shù)為,求的分布列及數(shù)學(xué)期望.(說(shuō)明:表示的概率.參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,點(diǎn)P是平面ABCD外一點(diǎn),MPC的中點(diǎn),在DM上取一點(diǎn)G,過(guò)GAP的平面交平面BDMGH,HBD上.

1)求證平面BDM

2)若GDM中點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)點(diǎn)的直線被曲線截得的弦長(zhǎng)為2,則直線的方程為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,底面是邊長(zhǎng)為的正三角形,,且分別是,中點(diǎn),則異面直線所成角的余弦值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱臺(tái)中,底面是邊長(zhǎng)為的正三角形,,是棱的中點(diǎn),點(diǎn)在棱上,且

(1)求證:平面;

(2)求直線和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)千件,需另投入成本,當(dāng)年產(chǎn)量不足80千件時(shí),(萬(wàn)元);當(dāng)年產(chǎn)量不小于80千件時(shí),(萬(wàn)元),每件售價(jià)為0.05萬(wàn)元,通過(guò)市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完.

1)寫(xiě)出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;

2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某學(xué)校研究性課題《什么樣的活動(dòng)最能促進(jìn)同學(xué)們進(jìn)行垃圾分類(lèi)》向題的統(tǒng)計(jì)圖(每個(gè)受訪者都只能在問(wèn)卷的5個(gè)活動(dòng)中選擇一個(gè)),以下結(jié)論錯(cuò)誤的是(  )

A. 回答該問(wèn)卷的總?cè)藬?shù)不可能是100個(gè)

B. 回答該問(wèn)卷的受訪者中,選擇“設(shè)置分類(lèi)明確的垃圾桶”的人數(shù)最多

C. 回答該問(wèn)卷的受訪者中,選擇“學(xué)校團(tuán)委會(huì)宣傳”的人數(shù)最少

D. 回答該問(wèn)卷的受訪者中,選擇“公益廣告”的人數(shù)比選擇“學(xué)校要求”的少8個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案