已知f(x)與g(x)是定義在R上的非奇非偶函數(shù),且h(x)=f(x)g(x)是定義在R上的偶函數(shù),試寫(xiě)出滿足條件的一組函數(shù):f(x)=________,g(x)=________.(只要寫(xiě)出滿足條件的一組即可)

x+1    x-1
分析:已知f(x)與g(x)是定義在R上的非奇非偶函數(shù),且h(x)=f(x)g(x)是定義在R上的偶函數(shù),可以令f(x)=x+1,g(x)=x-1,從而求解;
解答:∵f(x)與g(x)是定義在R上的非奇非偶函數(shù),且h(x)=f(x)g(x)是定義在R上的偶函數(shù),
∴可以找f(x)=x+1,g(x)=x-1,構(gòu)成平方差公式,
h(x)=f(x)g(x)=x2-1,h(x)為偶函數(shù),
故答案為:f(x)=x+1,g(x)=x-1;(答案不唯一)
點(diǎn)評(píng):此題主要考查偶函數(shù)的定義及其性質(zhì),此題利用平方差公式進(jìn)行構(gòu)造,要知道偶函數(shù)的性質(zhì)f(-x)=f(x),奇函數(shù)的性質(zhì)f(-x)=-f(x),此題是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知f(x)與g(x)是定義在R上的連續(xù)函數(shù),如果f(x)與g(x)僅當(dāng)x=0時(shí)的函數(shù)值為0,且f(x)≥g(x),那么下列情形不可能出現(xiàn)的是


  1. A.
    0是f(x)的極大值,也是g(x)的極大值
  2. B.
    0是f(x)的極小值,也是g(x)的極小值
  3. C.
    0是f(x)的極大值,但不是g(x)的極值
  4. D.
    0是f(x)的極小值,但不是g(x)的極值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式
(1)當(dāng)a=-2時(shí),函數(shù)F(x)=f(x)-g(x)在其定義域范圍是增函數(shù),求實(shí)數(shù)b的取值范圍;
(2)當(dāng)x>1時(shí),證明f(x)>h(x)成立;
(3)記函數(shù)f(x)與g(x)的圖象分別是C1、C2,C1、C2相交于不同的兩點(diǎn)P,Q,過(guò)線段PQ的中點(diǎn)R作垂直于x軸的垂線,與C1、C2分別交于M、N,問(wèn)是否存在點(diǎn)R,使得曲線C1在M處的切線與曲線C2在N處的切線平行?若存在,試求出R點(diǎn)的坐標(biāo);若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省荊門市鐘祥市高三(上)11月聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)
(1)當(dāng)a=-2時(shí),函數(shù)F(x)=f(x)-g(x)在其定義域范圍是增函數(shù),求實(shí)數(shù)b的取值范圍;
(2)當(dāng)x>1時(shí),證明f(x)>h(x)成立;
(3)記函數(shù)f(x)與g(x)的圖象分別是C1、C2,C1、C2相交于不同的兩點(diǎn)P,Q,過(guò)線段PQ的中點(diǎn)R作垂直于x軸的垂線,與C1、C2分別交于M、N,問(wèn)是否存在點(diǎn)R,使得曲線C1在M處的切線與曲線C2在N處的切線平行?若存在,試求出R點(diǎn)的坐標(biāo);若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省荊門市鐘祥市高三(上)11月聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)
(1)當(dāng)a=-2時(shí),函數(shù)F(x)=f(x)-g(x)在其定義域范圍是增函數(shù),求實(shí)數(shù)b的取值范圍;
(2)當(dāng)x>1時(shí),證明f(x)>h(x)成立;
(3)記函數(shù)f(x)與g(x)的圖象分別是C1、C2,C1、C2相交于不同的兩點(diǎn)P,Q,過(guò)線段PQ的中點(diǎn)R作垂直于x軸的垂線,與C1、C2分別交于M、N,問(wèn)是否存在點(diǎn)R,使得曲線C1在M處的切線與曲線C2在N處的切線平行?若存在,試求出R點(diǎn)的坐標(biāo);若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年遼寧省沈陽(yáng)二中等重點(diǎn)中學(xué)協(xié)作體高考預(yù)測(cè)數(shù)學(xué)試卷10(理科)(解析版) 題型:解答題

已知函數(shù)
(1)當(dāng)a=-2時(shí),函數(shù)F(x)=f(x)-g(x)在其定義域范圍是增函數(shù),求實(shí)數(shù)b的取值范圍;
(2)當(dāng)x>1時(shí),證明f(x)>h(x)成立;
(3)記函數(shù)f(x)與g(x)的圖象分別是C1、C2,C1、C2相交于不同的兩點(diǎn)P,Q,過(guò)線段PQ的中點(diǎn)R作垂直于x軸的垂線,與C1、C2分別交于M、N,問(wèn)是否存在點(diǎn)R,使得曲線C1在M處的切線與曲線C2在N處的切線平行?若存在,試求出R點(diǎn)的坐標(biāo);若不存在,試說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案