15.已知角α的始邊是x軸非負(fù)半軸.其終邊經(jīng)過(guò)點(diǎn)$P(-\frac{3}{5},-\frac{4}{5})$,則tanα的值為$\frac{4}{3}$.

分析 利用三角函數(shù)的定義,即可得出結(jié)論.

解答 解:∵角α的始邊是x軸非負(fù)半軸.其終邊經(jīng)過(guò)點(diǎn)$P(-\frac{3}{5},-\frac{4}{5})$,
∴tanα=$\frac{4}{3}$,
故答案為$\frac{4}{3}$.

點(diǎn)評(píng) 本題考查三角函數(shù)的定義,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的最小正周期為π,其圖象關(guān)于直線x=$\frac{π}{3}$對(duì)稱,則|φ|的最小值為(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{5π}{6}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù):①f(x)=2sin(2x+$\frac{π}{3}$);②f(x)=2sin(2x-$\frac{π}{6}$);③f(x)=2sin($\frac{1}{2}$x+$\frac{π}{3}$);④f(x)=2sin(2x-$\frac{π}{3}$),其中,最小正周期為π且圖象關(guān)于直線x=$\frac{π}{3}$對(duì)稱的函數(shù)序號(hào)是②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知集合A={x|-1≤x<3},B={x∈Z|x2<4},則A∩B=( 。
A.{0,1}B.{-1,0,1,2}C.{-1,0,1}D.{-2,-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.命題p:若a<b,則?c∈R,ac2<bc2;命題q:?x0>0,使得x0-1+lnx0=0,則下列命題為真命題的是( 。
A.p∧qB.p∨(¬q)C.(¬p)∧qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x-2y+2≥0\\ x+2y+2≥0\\ 2x-y-1≤0\end{array}\right.$,則2|x+1|+y的最大值是(  )
A.$\frac{14}{3}$B.$\frac{19}{3}$C.4D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知1=x2+4y2-2xy(x<0,y<0),則x+2y的取值范圍為[-2,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)函數(shù)f(x)=alnx-x,g(x)=aex-x,其中a為正實(shí)數(shù).
(Ⅰ)若f(x)在(1,+∞)上是單調(diào)減函數(shù),且g(x)在(2,+∞)上有最小值,求a的取值范圍;
(Ⅱ)若函數(shù)f(x)與g(x)都沒(méi)有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.點(diǎn)P到橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$上的任意一點(diǎn),F(xiàn)1,F(xiàn)2是它的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),$\overrightarrow{OQ}=\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}$,則動(dòng)點(diǎn)Q的軌跡方程是$\frac{x^2}{16}+\frac{y^2}{12}=1$.

查看答案和解析>>

同步練習(xí)冊(cè)答案