【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,設(shè)傾斜角為的直線的參數(shù)方程為為參數(shù))與曲線為參數(shù))相交于不同的兩點(diǎn)

(1)若,求線段的中點(diǎn)的直角坐標(biāo);

(2)若直線的斜率為2,且過已知點(diǎn),求的值.

【答案】(1)(2)

【解析】

試題分析:(1)根據(jù),將參數(shù)方程轉(zhuǎn)化為普通方程:,再將直線參數(shù)方程代入,利用韋達(dá)定理得,最后根據(jù)直線參數(shù)方程幾何意義得線段的中點(diǎn)對(duì)應(yīng)參數(shù)為,即得線段的中點(diǎn)的直角坐標(biāo)(2)將直線參數(shù)方程(其中)代入,利用韋達(dá)定理得,最后根據(jù)直線參數(shù)方程幾何意義得

試題解析:(1)由曲線為參數(shù)),可得的普通方程是..........2分

當(dāng)時(shí),直線的參數(shù)方程為為參數(shù)),

代入曲線的普通方程,得,..................3分

,則線段的中點(diǎn)對(duì)應(yīng)的,

故線段的中點(diǎn)的直角坐標(biāo)為...................5分

(2)將直線的參數(shù)方程代入曲線的普通方程,化簡(jiǎn)得

,......................7分

,.......................9分

故已知得,故.......................10分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)舉行有獎(jiǎng)促銷活動(dòng),顧客購(gòu)買一定金額商品后即可抽獎(jiǎng),每次抽獎(jiǎng)都從裝有4個(gè)紅球、6個(gè)白球的甲箱和裝有5個(gè)紅球、5個(gè)白球的乙箱中,各隨機(jī)摸出1個(gè)球,在摸出的2個(gè)球中,若都是紅球,則獲一等獎(jiǎng);若只有1個(gè)紅球,則獲二等獎(jiǎng);若沒有紅球,則不獲獎(jiǎng).

(1)求顧客抽獎(jiǎng)1次能獲獎(jiǎng)的概率;

(2)若某顧客有3次抽獎(jiǎng)機(jī)會(huì),記該顧客在3次抽獎(jiǎng)中獲一等獎(jiǎng)的次數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1若曲線在點(diǎn)處與直線相切,求的值;

2若函數(shù)有兩個(gè)零點(diǎn),試判斷的符號(hào),并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線, 是焦點(diǎn),直線是經(jīng)過點(diǎn)的任意直線.

(Ⅰ)若直線與拋物線交于、兩點(diǎn),且是坐標(biāo)原點(diǎn), 是垂足),求動(dòng)點(diǎn)的軌跡方程;

(Ⅱ)若、兩點(diǎn)在拋物線上,且滿足,求證:直線必過定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)

(1)若函數(shù)上為增函數(shù),求的取值范圍;

(2)若函數(shù)上不單調(diào)時(shí);

上的最大值、最小值分別為,求;

設(shè),若,對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分為14分)已知定義域?yàn)?/span>R的函數(shù)是奇函數(shù).

1)求a,b的值;

2)若對(duì)任意的t∈R,不等式ft22t)+f2t2k<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的二次函數(shù).

(1)設(shè)集合,分別從集合中隨機(jī)取一個(gè)數(shù)作為,求函數(shù)在區(qū)間上是增函數(shù)的概率;

(2)設(shè)點(diǎn)是區(qū)域內(nèi)的隨機(jī)點(diǎn),記事件“函數(shù)有兩個(gè)零點(diǎn),其中一個(gè)大于1,另一個(gè)小于1”為事件,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),橢圓的離心率為是橢圓的右焦點(diǎn),直線的斜率為為坐標(biāo)原點(diǎn).

I的方程;

II設(shè)過點(diǎn)的動(dòng)直線相交于兩點(diǎn),當(dāng)的面積最大時(shí),求的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是定義在上的函數(shù),并且滿足下面三個(gè)條件:①對(duì)任意正數(shù),都有;②當(dāng)時(shí), ;③.

(1)求, 的值;

(2)證明上是減函數(shù);

(3)如果不等式成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案