精英家教網 > 高中數學 > 題目詳情

選修4-1:幾何證明選講
已知AD是△ABC的外角∠EAC的平分線,交BC的延長線于點D,延長DA交△ABC的外接圓于點F,連接FB,FC.
(1)求證:FB=FC;
(2)若AB是△ABC外接圓的直徑,∠EAC=120°,BC=6,求AD的長.

(1)證明:∵AD平分∠EAC,∴∠EAD=∠DAC;
∵四邊形AFBC內接于圓,∴∠DAC=∠FBC; …(3分)
∵∠EAD=∠FAB=∠FCB,
∴∠FBC=∠FCB,
∴FB=FC.…(5分)
(2)解:∵AB是圓的直徑,∴∠ACD=90°
∵∠EAC=120°,∴∠DAC=∠EAC=60°,∠D=30°…(7分)
在Rt△ACB中,∵BC=6,∠BAC=60°∴AC=2
又在Rt△ACD中,∠D=30°,AC=2
∴AD=4 …(10分)
分析:(1)利用AD平分∠EAC,可得∠EAD=∠DAC,利用四邊形AFBC內接于圓,可得∠DAC=∠FBC,由此可知FB=FC;
(2)利用AB是圓的直徑,可得∠ACD=90°,結合∠EAC=120°,可得∠DAC=∠EAC=60°,∠D=30°,從而利用特殊角的三角函數,即可求得AD的長.
點評:本題考查幾何證明選講,考查圓的性質,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網選修4-1:幾何證明選講
如圖,圓O的直徑AB=10,弦DE⊥AB于點H,HB=2.
(1)求DE的長;
(2)延長ED到P,過P作圓O的切線,切點為C,若PC=2
5
,求PD的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網A、選修4-1:幾何證明選講 
如圖,PA與⊙O相切于點A,D為PA的中點,
過點D引割線交⊙O于B,C兩點,求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
已知矩陣M=
12
2x
的一個特征值為3,求另一個特征值及其對應的一個特征向量.
C.選修4-4:坐標系與參數方程
在極坐標系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數方程為
x=t
y=1+2t
(t為參數),判斷直線l和圓C的位置關系.
D.選修4-5:不等式選講
求函數y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

選修4-1:幾何證明選講
自圓O外一點P引圓的一條切線PA,切點為A,M為PA的中點,過點M引圓O的割線交該圓于B、C兩點,且∠BMP=100°,∠BPC=40°,求∠MPB的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•徐州模擬)選修4-1:幾何證明選講
如圖,直線AB經過圓上O的點C,并且OA=OB,CA=CB,圓O交于直線OB于E,D,連接EC,CD,若tan∠CED=
12
,圓O的半徑為3,求OA的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•南京二模)選修4-1:幾何證明選講
如圖,圓O是等腰三角形ABC的外接圓,AB=AC,延長BC到點D,使得CD=AC,連結AD交圓O于點E,連結BE與AC交于點F,求證:AE2=EF•BE.

查看答案和解析>>

同步練習冊答案