精英家教網 > 高中數學 > 題目詳情
半徑為3的圓與y軸相切,圓心在直線x-3y=0上,則此圓方程為
(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9
(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9
分析:依題意,設此圓方程為(x-a)2+(y-b)2=9,結合題意,列出關于a,b的方程組,解之即可.
解答:解:∵半徑為3的圓與y軸相切,圓心在直線x-3y=0上,
∴設此圓方程為(x-a)2+(y-b)2=9,
a-3b=0
|a|=3
,解得
a=3
b=1
a=-3
b=-1

∴此圓方程為(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.
故答案為:(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.
點評:本題考查圓的標準方程,著重考查待定系數法與方程思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•黃埔區(qū)一模)給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,稱圓心在原點O、半徑是
a2+b2
的圓為橢圓C的“準圓”.已知橢圓C的一個焦點為F(
2
,0)
,其短軸的一個端點到點F的距離為
3

(1)求橢圓C和其“準圓”的方程;
(2)過橢圓C的“準圓”與y軸正半軸的交點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,求l1,l2的方程;
(3)若點A是橢圓C的“準圓”與x軸正半軸的交點,B,D是橢圓C上的兩相異點,且BD⊥x軸,求
AB
AD
的取值范圍.

查看答案和解析>>

科目:高中數學 來源:黃埔區(qū)一模 題型:解答題

給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,稱圓心在原點O、半徑是
a2+b2
的圓為橢圓C的“準圓”.已知橢圓C的一個焦點為F(
2
,0)
,其短軸的一個端點到點F的距離為
3

(1)求橢圓C和其“準圓”的方程;
(2)過橢圓C的“準圓”與y軸正半軸的交點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,求l1,l2的方程;
(3)若點A是橢圓C的“準圓”與x軸正半軸的交點,B,D是橢圓C上的兩相異點,且BD⊥x軸,求
AB
AD
的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2013年上海市黃浦區(qū)高考數學一模試卷(文科)(解析版) 題型:解答題

給定橢圓C:,稱圓心在原點O、半徑是的圓為橢圓C的“準圓”.已知橢圓C的一個焦點為,其短軸的一個端點到點F的距離為
(1)求橢圓C和其“準圓”的方程;
(2)過橢圓C的“準圓”與y軸正半軸的交點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,求l1,l2的方程;
(3)若點A是橢圓C的“準圓”與x軸正半軸的交點,B,D是橢圓C上的兩相異點,且BD⊥x軸,求的取值范圍.

查看答案和解析>>

同步練習冊答案