15.△ABC中,若$\frac{sinB-sinA}{sinC}$=$\frac{\sqrt{3}a+c}{a+b}$,則角B的大小為( 。
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

分析 利用正弦定理以及余弦定理化簡(jiǎn)求解即可.

解答 解:在△ABC中,由正弦定理$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC=2R}$,可得:sinB=$\frac{2R}$,sinA=$\frac{a}{2R}$,sinC=$\frac{c}{2R}$,
∵$\frac{sinB-sinA}{sinC}$=$\frac{\sqrt{3}a+c}{a+b}$,可得:$\frac{b-a}{c}$=$\frac{\sqrt{3}a+c}{a+b}$,整理可得:c2+a2-b2=-$\sqrt{3}$ac,
∴由余弦定理可得:cosB=$\frac{{c}^{2}+{a}^{2}-^{2}}{2ac}$=-$\frac{\sqrt{3}}{2}$,
∵B∈(0,π),∴B=$\frac{5π}{6}$.  
 故選:B.

點(diǎn)評(píng) 本題考查正弦定理以及余弦定理的應(yīng)用,考查三角形的解法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.甲、乙兩支排球隊(duì)進(jìn)行比賽,約定先勝3局者獲得比賽的勝利,比賽隨即結(jié)束.除第五局甲隊(duì)獲勝的概率是$\frac{1}{2}$外,其余每局比賽甲隊(duì)獲勝的概率都是$\frac{2}{3}$.假設(shè)各局比賽結(jié)果相互獨(dú)立.則甲隊(duì)以3:2獲得比賽勝利的概率為( 。
A.$\frac{2}{81}$B.$\frac{4}{27}$C.$\frac{8}{27}$D.$\frac{16}{81}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.某校有男生450人,女生500人,現(xiàn)用分層抽樣的方法從全校學(xué)生中抽取一個(gè)容量為95的樣本,則抽出的男生人數(shù)是( 。
A.45B.50C.55D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.求函數(shù)的定義域
(1)y=log5(1+x)        
(2)$y=\sqrt{x-5}$;      
(3)$y={2^{\frac{1}{x}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{1}{3}$x3-2x.
(1)若將函數(shù)f(x)的圖象向下平移$\frac{1}{3}$個(gè)單位長(zhǎng)度得函數(shù)h(x)的圖象,求函數(shù)h(x)的圖象在x=1處的切線方程;
(2)若函數(shù)g(x)=f(x)-x2-x+m在[-2,4]上有零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,直線y=4與y軸的交點(diǎn)為P,與拋物線C的交點(diǎn)為Q,且|QF|=2|PQ|,過(guò)F的直線l與拋物線C相交于A,B兩點(diǎn).
(1)求C的方程;
(2)設(shè)AB的垂直平分線l'與C相交于M,N兩點(diǎn),試判斷A,M,B,N四點(diǎn)是否在同一個(gè)圓上?若在,求出l的方程;若不在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓$C:\frac{x^2}{4}+{y^2}=1$,如圖所示點(diǎn)A(x1,y1),B(x2,y2),P(x3,y3)為橢圓上任意三點(diǎn).
(Ⅰ)若$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OP}=\overrightarrow 0$,是否存在實(shí)數(shù)λ,使得代數(shù)式x1x2+λy1y2為定值.若存在,求出實(shí)數(shù)λ和x1x2+λy1y2的值;若不存在,說(shuō)明理由.
(Ⅱ)若$若\overrightarrow{OA}•\overrightarrow{OB}=0$,求三角形OAB面積的最大值;
(Ⅲ)滿足(Ⅱ),且在三角形OAB面積取得最大值的前提下,若線段PA,PB與橢圓長(zhǎng)軸和短軸交于點(diǎn)E,F(xiàn)(E,F(xiàn)不是橢圓的頂點(diǎn)).判斷四邊形ABFE的面積是否為定值.若是,求出定值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=ax+b的圖象如圖所示,其中a,b為常數(shù),則下列結(jié)論正確的是( 。
A.0<a<1,b>0B.0<a<1,b<0C.a>1,b<0D.a>1,b>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.以橢圓3x2+13y2=39的焦點(diǎn)為頂點(diǎn),以$y=±\frac{1}{2}x$為漸近線的雙曲線方程為$\frac{{x}^{2}}{10}-\frac{{y}^{2}}{\frac{5}{2}}=1$.

查看答案和解析>>

同步練習(xí)冊(cè)答案