已知tanx=,其中0<a<1,x是三角形的一個(gè)內(nèi)角,則cosx的值是( 。

A.      B.       C.     D.±

答案:C
解析:

解析:∵0<a<1,∴a2-1<0.

∴tanx=<0.∴x是鈍角.

∵cos2x=

=,

∴cosx=.故選C.

答案:C


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論:
①已知命題p:?x∈R,tanx=1;命題q:?x∈R,x2-x+1>0.則命題“p∧?q”是假命題;
②函數(shù)y=
|x|
x2+1
的最小值為
1
2
且它的圖象關(guān)于y軸對(duì)稱;
③“a>b”是“2a>2b”的充分不必要條件;
④在△ABC中,若sinAcosB=sinC,則△ABC中是直角三角形.
⑤若tanθ=2,則sin2θ=
4
5
;
其中正確命題的序號(hào)為
①④⑤
①④⑤
.(把你認(rèn)為正確的命題序號(hào)填在橫線處)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列結(jié)論:
①若命題p:?x∈R,tanx=1,命題q:?x∈R,x2-x+1>0,則命題“p∧q“是假命題 
②a+b>0成立的必要條件是a>0,b>0 
③若點(diǎn)O和點(diǎn)F分別為橢圓
x2
4
+
y2
3
=1
的中心和左焦點(diǎn),點(diǎn)P為橢圓上任一點(diǎn),則
OP
FP
的最大值為6 
④五進(jìn)制的數(shù)412化為十進(jìn)制的數(shù)為106 
⑤已知函數(shù)f(x)在(-∞,+∞)為增函數(shù),a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),則a+b≥0.
則其中正確結(jié)論的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:013

已知tanx = (0 <x<) (其中a>b>0), 則sinx的值為

[  ]

A.     B.

C.   D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanx=,其中0<a<1,x是三角形的一個(gè)內(nèi)角,則cosx的值是(    )

A.            B.               C.         D.±

查看答案和解析>>

同步練習(xí)冊(cè)答案