19.函數(shù)y=$\frac{{x}^{2}+2x+1}{{x}^{2}+4x}$(x>0)的最小值是$\frac{3}{4}$.

分析 令x+1=t(t>1),則y=$\frac{{t}^{2}}{{t}^{2}+2t-3}$=$\frac{1}{1+\frac{2}{t}-\frac{3}{{t}^{2}}}$,運(yùn)用配方法,即可得到所求最小值.

解答 解:y=$\frac{(x+1)^{2}}{{x}^{2}+4x}$,
令x+1=t(t>1),
則y=$\frac{{t}^{2}}{{t}^{2}+2t-3}$=$\frac{1}{1+\frac{2}{t}-\frac{3}{{t}^{2}}}$
=$\frac{1}{-3(\frac{1}{t}-\frac{1}{3})+\frac{4}{3}}$,
當(dāng)$\frac{1}{t}$=$\frac{1}{3}$,即t=3,即x=2時(shí),取得最小值$\frac{3}{4}$.
故答案為:$\frac{3}{4}$.

點(diǎn)評(píng) 本題考查函數(shù)的最值的求法,注意運(yùn)用換元法和配方法,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.(1)計(jì)算:27${\;}^{\frac{2}{3}}$-$\sqrt{(3-π)^{2}}$+lg5+lg2;
(2)化簡(jiǎn):tan$\frac{5π}{4}$+sin($\frac{π}{2}$+α)-cos(-α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若圓錐底面半徑為2,高為$\sqrt{5}$,則其側(cè)面積為6π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知F1、F2分別為橢圓$\frac{{x}^{2}}{2}$+y2=1的左右兩個(gè)焦點(diǎn),過(guò)F1作傾斜角為$\frac{π}{4}$的弦AB,則△F2AB的面積為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\frac{4}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{4\sqrt{2}}{3}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)x,y∈[0,1],則滿足y>$\sqrt{1-{x}^{2}}$的概率為( 。
A.1-$\frac{π}{4}$B.$\frac{1}{2}$C.$\frac{π}{4}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,橢圓C0:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0,a,b為常數(shù)),動(dòng)圓C1:x2+y2=t12,b<t1<a..點(diǎn)A1,A2分別為C0的左,右頂點(diǎn),C1與C0相交于A,B,C,D四點(diǎn).
(1)若C1經(jīng)過(guò)C0的焦點(diǎn),且C0離心率為$\frac{\sqrt{6}}{3}$,求∠DOC的大。
(2)設(shè)動(dòng)圓C2:x2+y2=t22與C0相交于A′,B′,C′,D′四點(diǎn),其中b<t2<a,t1≠t2.若t12+t22=a2+b2,證明:矩形ABCD與矩形A′B′C′D′的面積相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.經(jīng)過(guò)探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱中心,且“拐點(diǎn)”就是對(duì)稱中心.設(shè)函數(shù)g(x)=2x3-3x2+$\frac{3}{2}$,則g($\frac{1}{100}$)+g($\frac{2}{100}$)+…+g($\frac{99}{100}$)=( 。
A.100B.99C.50D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知三棱柱ABC-A1B1C1的側(cè)棱垂直于底面,各頂點(diǎn)都在同一球面上,若該棱柱的體積為$2\sqrt{3}$,AB=2,AC=1,∠BAC=60°,則此球的表面積等于( 。
A.B.20πC.D.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在空間直角坐標(biāo)系中,點(diǎn)(-2,1,5)關(guān)于x軸的對(duì)稱點(diǎn)的坐標(biāo)為(  )
A.(-2,1,-5)B.(-2,-1,-5)C.(2,-1,5)D.(2,1,-5)

查看答案和解析>>

同步練習(xí)冊(cè)答案