(本小題滿分13分)
設(shè)函數(shù)
(1)若曲線在點處與直線相切,求的值;
(2)求函數(shù)的單調(diào)區(qū)間與極值點.

(1)4  24
(2)的極大值點,的極小值點
解(Ⅰ)    ----------------2分
∵曲線在點處與直線相切,
-------------6分
(Ⅱ)∵,
時,,函數(shù)上單調(diào)遞增,
此時函數(shù)沒有極值點.            ---------------9分
時,由,
時,,函數(shù)單調(diào)遞增,
時,,函數(shù)單調(diào)遞減,
時,,函數(shù)單調(diào)遞增,
∴此時的極大值點,的極小值點.--------13分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,函數(shù)的最小值是          (     )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知函數(shù)上是增函數(shù).
(I)求實數(shù)的取值范圍;(6分)
(II)設(shè),求函數(shù)的最小值.(6分)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(14分)已知函數(shù).
(1)求這個函數(shù)的圖象在點處的切線方程;
(2)討論這個函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(文)已知函數(shù)(b、c為常數(shù)).
(1)若處取得極值,試求的值;
(2)若、上單調(diào)遞增,且在上單調(diào)遞減,又滿足,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本大題滿分14分)
設(shè)函數(shù)上兩點,若,且P點的橫坐標為.
(1)求P點的縱坐標;
(2)若
(3)記為數(shù)列的前n項和,若對一切都成立,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

上都是減函數(shù),對函數(shù)的單調(diào)性描述正確的是                                                             (   )
A.在上是增函數(shù)B.在上是增函數(shù)
C.在上是減函數(shù)D.在上是增函數(shù),在上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)y=的最大值為M,最小值為m,則的值為 (  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

定義在R上的偶函數(shù)滿足:對任意,有,則
A.B.
C.D.

查看答案和解析>>

同步練習冊答案