已知橢圓C的中心為坐標原點,短軸長為2,右焦點F(1,0),一條直線l的方程為:x=2,

(1)求橢圓C的標準方程;

(2)設O為坐標原點,F(xiàn)為橢圓的右焦點,點M是直線l上的動點,過點F作OM的垂線與以OM為直徑的圓交于點N,求證:線段ON的長為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C的中心為坐標原點,焦點在y軸上,離心率e=
2
2
該橢圓C與直線l:y=
2
x在第一象限交于F點,且直線l被橢圓C截得的弦長為2
3
,過F作傾斜角互補的兩直線FM,F(xiàn)N分別與橢圓C交于M,N兩點(F與M,N均不重合).
(Ⅰ)求橢圓C的方程;
(Ⅱ)求證:直線MN的斜率為定值;
(Ⅲ)求三角形FMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的中心為坐標原點O,一個長軸端點為(0,1),短軸端點和焦點所組成的四邊形為正方形,若直線l與y軸交于點P(0,m),與橢圓C交于不同的兩點A、B,且
AP
=3
PB

(Ⅰ)求橢圓C的離心率及其標準方程;
(Ⅱ)求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的中心為坐標原點,離心率為
2
2
,直線?與橢圓C相切于M點,F(xiàn)1、F2為橢圓的左右焦點,且|MF1|+|MF2|=2
2

(1)求橢圓C的標準方程;
(2)若直線m過F1點,且與橢圓相交于A、B兩點,|AF2|+|BF2|=
8
2
3
,求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的中心為坐標原點O,一個長軸端點為(0,2),短軸端點和焦點所組成的四邊形為正方形,直線l與y軸交于點P(0,m),與橢圓C交于相異兩點A、B,且
AP
=2
PB

(Ⅰ)求橢圓方程;
(Ⅱ)求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年長沙一中一模理)(13分)已知橢圓C的中心為坐標原點O,焦點F1,F2x軸上,離心率為,點Q在橢圓C上且滿足條件:= 2, 2

(Ⅰ)求橢圓C的方程;

     (Ⅱ)設A、B為橢圓上不同的兩點,且滿足OAOB,若(R)且,試問:是否為定值.若為定值,請求出;若不為定值,請說明理由。

查看答案和解析>>

同步練習冊答案