如圖,是拋物線為上的一點,以S為圓心,r為半徑()做圓,分別交x軸于A,B兩點,連結并延長SA、SB,分別交拋物線于C、D兩點。
(1)求證:直線CD的斜率為定值;
(2)延長DC交x軸負半軸于點E,若EC : ED =" 1" : 3,求的值。
科目:高中數(shù)學 來源: 題型:解答題
如圖,橢圓上的點M與橢圓右焦點的連線與x軸垂直,且OM(O是坐標原點)與橢圓長軸和短軸端點的連線AB平行.
(1)求橢圓的離心率;
(2)F1是橢圓的左焦點,C是橢圓上的任一點,證明:;
(3)過且與AB垂直的直線交橢圓于P、Q,若的面積是20 ,求此時橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓的圓心在坐標原點,且恰好與直線相切,設點A為圓上一動點,軸于點,且動點滿足,設動點的軌跡為曲線
(1)求曲線C的方程,
(2)直線l與直線l,垂直且與曲線C交于B、D兩點,求△OBD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知點是橢圓上任一點,點到直線的距離為,到點的距離為,且.直線與橢圓交于不同兩點、(,都在軸上方),且.
(1)求橢圓的方程;
(2)當為橢圓與軸正半軸的交點時,求直線方程;
(3)對于動直線,是否存在一個定點,無論如何變化,直線總經(jīng)過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為,過的左焦點的直線被圓截得的弦長為.
(1)求橢圓的方程;
(2)設的右焦點為,在圓上是否存在點,滿足,若存在,指出有幾個這樣的點(不必求出點的坐標);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知直線: 和橢圓,橢圓C的離心率為,連結橢圓的四個頂點形成四邊形的面積為.
(1)求橢圓C的方程;
(2)若直線與橢圓C有兩個不同的交點,求實數(shù)m的取值范圍;
(3)當時,設直線與y軸的交點為P,M為橢圓C上的動點,求線段PM長度的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的中心在原點,焦點在軸上,橢圓上的點到焦點的最小距離為,離心率.
(1)求橢圓的方程;
(2)若直線交于、兩點,點,問是否存在,使?若存在求出的值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com