【題目】已知關(guān)于x的不等式(kx﹣k2﹣4)(x﹣4)>0,其中k∈R;
(1)當(dāng)k=4時,求上述不等式的解集;
(2)當(dāng)上述不等式的解集為(﹣5,4)時,求k的值.
【答案】
(1)解:關(guān)于x的不等式(kx﹣k2﹣4)(x﹣4)>0,
當(dāng)k=4時,不等式化為(4x﹣16﹣4)(x﹣4)>0,
解得x<4或x>5,
所以不等式的解集為(﹣∞,4)∪(5,+∞);
(2)解:當(dāng)不等式(kx﹣k2﹣4)(x﹣4)>0的解集為(﹣5,4)時,
有 ,
解得k=﹣1或k=﹣4.
【解析】(1)當(dāng)k=4時,不等式化為(4x﹣16﹣4)(x﹣4)>0,求出解集即可,(2)不等式的解集為(﹣5,4)時,可得出一根為4,一根為-5,即可解得k的大小.
【考點精析】利用解一元二次不等式對題目進(jìn)行判斷即可得到答案,需要熟知求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應(yīng)方程的根;三求:求對應(yīng)方程的根;四畫:畫出對應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項系數(shù)為正時,小于取中間,大于取兩邊.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ln(1﹣x)﹣ln(1+x),則f(x)是( )
A.奇函數(shù),且在(0,1)上是增函數(shù)
B.奇函數(shù),且在(0,1)上是減函數(shù)
C.偶函數(shù),且在(0,1)上是增函數(shù)
D.偶函數(shù),且在(0,1)上是減函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某化工廠生產(chǎn)某種產(chǎn)品,當(dāng)年產(chǎn)量在150噸至250噸時,每年的生產(chǎn)成本y萬元與年產(chǎn)量x噸之間的關(guān)系可可近似地表示為y= ﹣30x+4000.
(1)若每年的生產(chǎn)總成本不超過2000萬元,求年產(chǎn)量x的取值范圍;
(2)求年產(chǎn)量為多少噸時,每噸的平均成本最低,并求每噸的最低成本.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上移動.
(1)證明:D1E⊥A1D;
(2)當(dāng)E為AB的中點時,求點E到面ACD1的距離;
(3)AE等于何值時,二面角D1﹣EC﹣D的大小為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若f(x)=ax2+3a是定義在[a2﹣5,a﹣1]上的偶函數(shù),令函數(shù)g(x)=f(x)+f(1﹣x),則函數(shù)g(x)的定義域為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】非空集合G關(guān)于運算⊕滿足:
⑴對任意a,b∈G,都有a+b∈G;
⑵存在e∈G使得對于一切a∈G都有a⊕e=e⊕a=a,
則稱G是關(guān)于運算⊕的融洽集,
現(xiàn)有下列集合與運算:
①G是非負(fù)整數(shù)集,⊕:實數(shù)的加法;
②G是偶數(shù)集,⊕:實數(shù)的乘法;
③G是所有二次三項式構(gòu)成的集合,⊕:多項式的乘法;
④G={x|x=a+b ,a,b∈Q},⊕:實數(shù)的乘法;
其中屬于融洽集的是(請?zhí)顚懢幪枺?/span>
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在邊長是2的正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為AB,A1C的中點.應(yīng)用空間向量方法求解下列問題.
(1)求EF的長
(2)證明:EF∥平面AA1D1D;
(3)證明:EF⊥平面A1CD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a、b、c∈R,a>b,則下列不等式成立的是( 。
A.
B.a2>b2
C.a(c2+1)>b(c2+1)
D.a|c|>b|c|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com