【題目】2018年7月24日,長春長生生物科技有限責(zé)任公司先被查出狂犬病疫苗生產(chǎn)記錄造假,后又被測出百白破疫苗“效價測定”項不符合規(guī)定, 由此引發(fā)的疫苗事件牽動了無數(shù)中國人的心.疫苗直接用于健康人群,尤其是新生兒和青少年,與人民的健康聯(lián)系緊密.因此,疫苗在上市前必須經(jīng)過嚴(yán)格的檢測,并通過臨床實驗獲得相關(guān)數(shù)據(jù),以保證疫苗使用的安全和有效.某生物制品研究所將某一型號疫苗用在動物小白鼠身上進行科研和臨床實驗,得到統(tǒng)計數(shù)據(jù)如下:
未感染病毒 | 感染病毒 | 總計 | |
未注射疫苗 | 20 | x | A |
注射疫苗 | 30 | y | B |
總計 | 50 | 50 | 100 |
現(xiàn)從所有試驗小白鼠中任取一只,取到“注射疫苗”小白鼠的概率為.
(1)求2×2列聯(lián)表中的數(shù)據(jù)的值;
(2)能否有99.9%把握認(rèn)為注射此種疫苗有效?
(3)現(xiàn)從感染病毒的小白鼠中任意抽取三只進行病理分析,記已注射疫苗的小白鼠只數(shù)為,求的分布列和數(shù)學(xué)期望.
附:,n=a+b+c+d.
P(K2≥k0) | 0.05 | 0.01 | 0.005 | 0.001 |
k0 | 3.841 | 6.635 | 7.879 | 10.828 |
【答案】(1)見解析;(2)見解析;(3)見解析
【解析】
(1)由從所有試驗小白鼠中任取一只,取到“注射疫苗”小白鼠的概率為,根據(jù)古典概型概率公式列方程可求得,進而可求得的值;(2)利用求得 ,與鄰界值比較,即可得到結(jié)論;(3)的可能取值為結(jié)合組合知識,利用古典概型概率公式求出各隨機變量對應(yīng)的概率,從而可得分布列,進而利用期望公式可得的數(shù)學(xué)期望.
(1)設(shè)“從所有試驗小白鼠中任取一只,取到‘注射疫苗’小白鼠”為事件A,
由已知得,所以
(2)
所以至少有99.9%的把握認(rèn)為疫苗有效.
(3)由已知的取值為
的分布列為
0 | 1 | 2 | 3 | |
P |
數(shù)學(xué)期望
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某校高一1000名學(xué)生的物理成績,隨機抽查了部分學(xué)生的期中考試成績,將數(shù)據(jù)整理后繪制成如圖所示的頻率分布直方圖.
(1)估計該校高一學(xué)生物理成績不低于80分的人數(shù);
(2)若在本次考試中,規(guī)定物理成績在m分以上(包括m分)的為優(yōu)秀,該校學(xué)生物理成績的優(yōu)秀率大約為18%,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】萬眾矚目的2018年俄羅斯世界杯決賽于北京時間2018年7月15日23時在俄羅斯莫斯科的盧日尼基體育場進行.為確保總決賽的順利進行,組委會決定在比賽地點盧日尼基球場外臨時圍建一個矩形觀眾候場區(qū),總面積為(如圖所示).要求矩形場地的一面利用體育場的外墻,其余三面用鐵欄桿圍,并且要在體育館外墻對面留一個長度為的入口.現(xiàn)已知鐵欄桿的租用費用為100元/.設(shè)該矩形區(qū)域的長為(單位:),租用鐵欄桿的總費用為(單位:元).
(1)將表示為的函數(shù);
(2)試確定,使得租用此區(qū)域所用鐵欄桿所需費用最小,并求出最小費用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】身體素質(zhì)拓展訓(xùn)練中,人從豎直墻壁的頂點A沿光滑桿自由下滑到傾斜的木板上(人可看作質(zhì)點),若木板的傾斜角不同,人沿著三條不同路徑AB、AC、AD滑到木板上的時間分別為t1、t2、t3,若已知AB、AC、AD與板的夾角分別為70o、90o和105o,則( )
A. t1>t2>t3 B. t1<t2<t3 C. t1=t2=t3 D. 不能確定t1、t2、t3之間的關(guān)系
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知在平面直角坐標(biāo)系中,圓的參數(shù)方程為 (為參數(shù)).以原點為極點,軸的非負(fù)半軸為極軸,取相同的單位長度建立極坐標(biāo)系.
(I)求圓的普通方程及其極坐標(biāo)方程;
(II)設(shè)直線的極坐標(biāo)方程為,射線與圓的交點為,與直線的交點為Q,求線段PQ的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】A藥店計劃從甲,乙兩家藥廠選擇一家購買100件某種中藥材,為此A藥店從這兩家藥廠提供的100件該種中藥材中隨機各抽取10件,以抽取的10件中藥材的質(zhì)量(單位:克》作為樣本.樣本數(shù)據(jù)的莖葉圖如圖所示.己知A藥店根據(jù)中藥材的質(zhì)量(單位:克)的往定性選擇藥廠
(1)根據(jù)樣本數(shù)據(jù),A藥店應(yīng)選擇哪家藥廠購買中藥材?
(2)若將抽取的樣本分布近似看作總體分布,藥店與所選藥廠商定中藥材的購買價格如下表:
每件中藥材的質(zhì)量(單位:克) | 購買價格(單位:元/件) |
(i)估計藥店所購買的件中藥材的總質(zhì)量;
(ii)若藥店所購買的件中藥材的總費用不超過元.求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某機械廠欲從米,米的矩形鐵皮中裁剪出一個四邊形加工成某儀器的零件,裁剪要求如下:點分別在邊上,且,.設(shè),四邊形的面積為(單位:平方米).
(1)求關(guān)于的函數(shù)關(guān)系式,求出定義域;
(2)當(dāng)的長為何值時,裁剪出的四邊形的面積最小,并求出最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x2+2xtanθ-1,x∈[-1,],其中θ∈(-,).
(1)當(dāng)θ=-時,求函數(shù)f(x)的最大值;
(2)求θ的取值范圍,使y=f(x)在區(qū)間[-1,]上是單調(diào)函數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com