設(shè)F1,F(xiàn)2分別是橢圓
x2
9
+y2=1
的左、右焦點.若點P在橢圓上,且
PF1
PF2
=0
,則|
PF1
+
PF2
|
=( 。
分析:先根據(jù)橢圓方程求得橢圓的半焦距c,根據(jù)
PF1
PF2
=0
得出PF1⊥PF2,推斷出點P在以 2
2
為半徑,以原點為圓心的圓上,進而求得P點到原點的距離,根據(jù)向量的加法法則得|
PF1
+
PF2
|
=| 2
PO
|
,從而解決問題.
解答:解:由題意半焦距c=
9-1
=2
2
,
又根據(jù)
PF1
PF2
=0
得出PF1⊥PF2,
∴點P在以 2
2
為半徑,以原點為圓心的圓上,
x2+y2 =8
x2
9
+y2=1
,解得x2=
63
8
,y2=
1
8

∴P到坐標原點的距離為:|
PO
|
=
x2+y2
=2
2
,
|
PF1
+
PF2
|
=| 2
PO
|
=2×2
2
=4
2
,
故選D.
點評:本題主要考查了橢圓的簡單性質(zhì),橢圓與圓的位置關(guān)系.考查了考生對橢圓基礎(chǔ)知識的綜合運用.屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,若在直線x=
a2
c
上存在點P,使線段PF1的中垂線過點F2,則橢圓的離心率的取值范圍是
3
3
,1)
3
3
,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點,若橢圓C上的一點A(1,
3
2
)到F1,F(xiàn)2的距離之和為4.
(1)求橢圓方程;
(2)若M,N是橢圓C上兩個不同的點,線段MN的垂直平分線與x軸交于點P,求證:|
OP
|<
1
2
;
(3)若M,N是橢圓C上兩個不同的點,Q是橢圓C上不同于M,N的任意一點,若直線QM,QN的斜率分別為KQM•KQN.問:“點M,N關(guān)于原點對稱”是KQM•KQN=-
3
4
的什么條件?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•南匯區(qū)二模)設(shè)F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,其右焦點是直線y=x-1與x軸的交點,短軸的長是焦距的2倍.
(1)求橢圓的方程;
(2)若P是該橢圓上的一個動點,求
PF1
PF2
的最大值和最小值;
(3)是否存在過點A(5,0)的直線l與橢圓交于不同的兩點C、D,使得|F2C|=|F2D|?若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•安徽)設(shè)橢圓E:
x2
a2
+
y2
1-a2
=1
的焦點在x軸上
(1)若橢圓E的焦距為1,求橢圓E的方程;
(2)設(shè)F1,F(xiàn)2分別是橢圓E的左、右焦點,P為橢圓E上第一象限內(nèi)的點,直線F2P交y軸于點Q,并且F1P⊥F1Q,證明:當a變化時,點P在某定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•南匯區(qū)二模)設(shè)F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,其右焦點是直線y=x-1與x軸的交點,短軸的長是焦距的2倍.
(1)求橢圓的方程;
(2)若P是該橢圓上的一個動點,求
PF1
PF2
的最大值和最小值;
(3)若P是該橢圓上的一個動點,點A(5,0),求線段AP中點M的軌跡方程.

查看答案和解析>>

同步練習冊答案