數(shù)學(xué)家歐拉

  歐拉(Euler),瑞士數(shù)學(xué)家及自然科學(xué)家.1707年4月15日出生于瑞士的巴塞爾,1783年9月18日于俄國彼得堡去逝.歐拉出生于牧師家庭,自幼受父親的教育,13歲時(shí)入讀巴塞爾大學(xué),15歲大學(xué)畢業(yè),16歲獲碩士學(xué)位.

  歐拉是18世紀(jì)數(shù)學(xué)界最杰出的人物之一,他不但為數(shù)學(xué)界做出了巨大的貢獻(xiàn),更把數(shù)學(xué)推至幾乎整個(gè)物理的領(lǐng)域.他是數(shù)學(xué)史上最多產(chǎn)的數(shù)學(xué)家,平均每年寫出八百多頁的論文,還寫了大量的力學(xué)、分析學(xué)、幾何學(xué)、變分法等的課本,《無窮小分析引論》、《微分學(xué)原理》、《積分學(xué)原理》等都成為數(shù)學(xué)中的經(jīng)典著作.

  歐拉對數(shù)學(xué)符號(hào)的創(chuàng)立及推廣起了積極的作用.比如用e表示自然對數(shù)的底,用i表示-1,用f(x)作為函數(shù)的符號(hào),π雖不是歐拉首先提出的,但是在歐拉倡導(dǎo)下推廣普及的.尤為不可思議的是歐拉將數(shù)學(xué)中最為活躍的五個(gè)數(shù)1,0,π,e,i竟用一個(gè)美妙絕倫的公式聯(lián)系了起來:eiπ+1=0(歐拉指數(shù)公式),在西方數(shù)學(xué)界甚至認(rèn)為此公式不亞于神的力量.

  歐拉對數(shù)學(xué)的研究如此廣泛,因此在許多數(shù)學(xué)的分支中也可經(jīng)常見到以他的名字命名的重要常數(shù)、公式和定理.

1.你對歐拉(Euler)了解嗎?請查閱歐拉(Euler)的故事,對于他“13歲時(shí)入讀巴塞爾大學(xué),15歲大學(xué)畢業(yè),16歲獲碩士學(xué)位”,你有何感觸?

2.作為新時(shí)代的青年,你做好將來為科學(xué)事業(yè)做貢獻(xiàn)的思想準(zhǔn)備了嗎?

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

法國數(shù)學(xué)家費(fèi)馬觀察到221+1=5,222+1=17,223+1=257224+1=65 537都是質(zhì)數(shù),于是他提出猜想:任何形如22n+1 (n∈N*)的數(shù)都是質(zhì)數(shù),這就是著名的費(fèi)馬猜想.半個(gè)世紀(jì)之后,善于發(fā)現(xiàn)的歐拉發(fā)現(xiàn)第5個(gè)費(fèi)馬數(shù)225+1=4 294 967 297=641×
6
 
 
700 417
不是質(zhì)數(shù),從而推翻了費(fèi)馬猜想,這一案例說明( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)學(xué)家歐拉1765年在其所著的《三角形幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知△ABC的頂點(diǎn)A(2,0),B(0,4),若其歐拉線的方程為x-y+2=0,則頂點(diǎn)C的坐標(biāo)是( 。
A、(-4,0)B、(0,-4)C、(4,0)D、(4,0)或(-4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:設(shè)計(jì)必修一數(shù)學(xué)(人教A版) 人教A版 題型:044

函數(shù)概念的發(fā)展歷程

  17世紀(jì),科學(xué)家們致力于運(yùn)動(dòng)的研究,如計(jì)算天體的位置,遠(yuǎn)距離航海中對經(jīng)度和緯度的測量,炮彈的速度對于高度和射程的影響等.諸如此類的問題都需要探究兩個(gè)變量之間的關(guān)系,并根據(jù)這種關(guān)系對事物的變化規(guī)律作出判斷,如根據(jù)炮彈的速度推測它能達(dá)到的高度和射程.這正是函數(shù)產(chǎn)生和發(fā)展的背景.

  “function”一詞最初由德國數(shù)學(xué)家萊布尼茲(G.W.Leibniz,1646~1716)在1692年使用.在中國,清代數(shù)學(xué)家李善蘭(1811~1882)在1859年和英國傳教士偉烈亞力合譯的《代徽積拾級(jí)》中首次將“function”譯做“函數(shù)”.

  萊布尼茲用“函數(shù)”表示隨曲線的變化而改變的幾何量,如坐標(biāo)、切線等.1718年,他的學(xué)生,瑞士數(shù)學(xué)家約翰·伯努利(J.Bernoulli,1667~1748)強(qiáng)調(diào)函數(shù)要用公式表示.后來,數(shù)學(xué)家認(rèn)為這不是判斷函數(shù)的標(biāo)準(zhǔn).只要一些變量變化,另一些變量隨之變化就可以了.所以,1755年,瑞士數(shù)學(xué)家歐拉(L.Euler,1707~1783)將函數(shù)定義為“如果某些變量,以一種方式依賴于另一些變量,我們將前面的變量稱為后面變量的函數(shù)”.

  當(dāng)時(shí)很多數(shù)學(xué)家對于不用公式表示函數(shù)很不習(xí)慣,甚至抱懷疑態(tài)度.函數(shù)的概念仍然是比較模糊的.

  隨著對微積分研究的深入,18世紀(jì)末19世紀(jì)初,人們對函數(shù)的認(rèn)識(shí)向前推進(jìn)了.德國數(shù)學(xué)家狄利克雷(P.G.L.Dirichlet,1805~1859)在1837年時(shí)提出:“如果對于x的每一個(gè)值,y總有一個(gè)完全確定的值與之對應(yīng),則y是x的函數(shù)”.這個(gè)定義較清楚地說明了函數(shù)的內(nèi)涵.只要有一個(gè)法則,使得取值范圍中的每一個(gè)值,有一個(gè)確定的y和它對應(yīng)就行了,不管這個(gè)法則是公式、圖象、表格還是其他形式.19世紀(jì)70年代以后,隨著集合概念的出現(xiàn),函數(shù)概念又進(jìn)而用更加嚴(yán)謹(jǐn)?shù)募虾蛯?yīng)語言表述,這就是本節(jié)學(xué)習(xí)的函數(shù)概念.

  綜上所述可知,函數(shù)概念的發(fā)展與生產(chǎn)、生活以及科學(xué)技術(shù)的實(shí)際需要緊密相關(guān),而且隨著研究的深入,函數(shù)概念不斷得到嚴(yán)謹(jǐn)化、精確化的表達(dá),這與我們學(xué)習(xí)函數(shù)的過程是一樣的.

你能以函數(shù)概念的發(fā)展為背景,談?wù)剰某踔械礁咧袑W(xué)習(xí)函數(shù)概念的體會(huì)嗎?

1.探尋科學(xué)家發(fā)現(xiàn)問題的過程,對指導(dǎo)我們的學(xué)習(xí)有什么現(xiàn)實(shí)意義?

2.萊布尼茲、狄利克雷等科學(xué)家有哪些品質(zhì)值得我們學(xué)習(xí)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

法國數(shù)學(xué)家費(fèi)馬觀察到,都是質(zhì)數(shù),于是他提出猜想:任何形如N*)的數(shù)都是質(zhì)數(shù),這就是著名的費(fèi)馬猜想.半個(gè)世紀(jì)之后,善于發(fā)現(xiàn)的歐拉發(fā)現(xiàn)第5個(gè)費(fèi)馬數(shù)不是質(zhì)數(shù),從而推翻了費(fèi)馬猜想,這一案例說明( 。

 

A.

歸納推理,結(jié)果一定不正確

B.

歸納推理,結(jié)果不一定正確

 

C.

類比推理,結(jié)果一定不正確

D.

類比推理,結(jié)果不一定正確

查看答案和解析>>

同步練習(xí)冊答案