7.在如圖所示的幾何體中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,AC=BC=BD=2AE,M是AB的中點(diǎn).
(Ⅰ) 求證:CM⊥EM;
(Ⅱ) 求CM與平面CAE所成角的大;
(Ⅲ) 求平面ABC與平面CDE所成銳二面角的余弦值.

分析 (Ⅰ)分別以CB,CA所在直線為x,y軸,過(guò)點(diǎn)C且與平面ABC垂直的直線為z軸,建立空間直角坐標(biāo)系C-xyz,寫(xiě)出要用的點(diǎn)的坐標(biāo),寫(xiě)出線對(duì)應(yīng)的向量的坐標(biāo),根據(jù)兩個(gè)向量的數(shù)量積等于0,得到結(jié)論.
(Ⅱ)寫(xiě)出直線的方向向量,設(shè)出平面的法向量,根據(jù)法向量與平面上的向量垂直,數(shù)量積等于0,得到兩個(gè)關(guān)于法向量坐標(biāo)的關(guān)系式,寫(xiě)出其中一個(gè)法向量,根據(jù)法向量與直線的夾角得到結(jié)果.
(Ⅲ)分別求出平面ABC的一個(gè)法向量與平面CDE的一個(gè)法向量,利用向量法能求出平面ABC與平面CDE所成銳二面角的余弦值.

解答 證明:(Ⅰ)分別以CB,CA所在直線為x,y軸,過(guò)點(diǎn)C且與平面ABC垂直的直線為z軸,
建立如圖所示的空間直角坐標(biāo)系C-xyz
設(shè)AE=a,則M(a,-a,0),E(0,-2a,a),
所以$\overrightarrow{CM}$=(a,-a,0),$\overrightarrow{EM}$=(a,a,-a),
∴$\overrightarrow{CM}•\overrightarrow{EM}$=a×a+(-a)×a+0×(-a)=0,
∴CM⊥EM.
解:(2)平面CAE的法向量$\overrightarrow{n}$=(1,0,0),$\overrightarrow{CM}$=(a,-a,0),
設(shè)CM與平面CAE所成角為θ,
則sinθ=$\frac{|\overrightarrow{CM}•\overrightarrow{n}|}{|\overrightarrow{CM}|•|\overrightarrow{n}|}$=$\frac{a}{\sqrt{2}a}$=$\frac{\sqrt{2}}{2}$,θ=45°,
∴直線CM與平面CAE所成的角為45°.
(3)D(2a,0,2a),$\overrightarrow{CD}$=(2a,0,2a),$\overrightarrow{CE}$=(0,-2a,a),
設(shè)平面CDE的法向量$\overrightarrow{m}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{CE}=-2ay+az=0}\\{\overrightarrow{m}•\overrightarrow{CD}=2ax+2az=0}\end{array}\right.$,令y=1,得$\overrightarrow{m}$=(-2,1,2),
平面ABC的法向量$\overrightarrow{p}$=(0,0,1),
設(shè)平面ABC與平面CDE所成銳二面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{p}|}{|\overrightarrow{m}|•|\overrightarrow{p}|}$=$\frac{2}{3}$.
∴平面ABC與平面CDE所成銳二面角的余弦值為$\frac{2}{3}$.

點(diǎn)評(píng) 本題考查空間位置關(guān)系的判斷與證明,考查二面角的求法,考查空間想象能力、推理論證能力和運(yùn)算求解能力,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知三個(gè)函數(shù)f(x)=2x+x,g(x)=x-3,h(x)=log2x+x 的零點(diǎn)依次為a,b,c,則下列結(jié)論正確的是( 。
A.a<b<cB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=3x,g(x)=|x+a|-3,其中a∈R.
(Ⅰ)若函數(shù)h(x)=f[g(x)]的圖象關(guān)于直線x=2對(duì)稱,求a的值;
(Ⅱ)給出函數(shù)y=g[f(x)]的零點(diǎn)個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足cos$\frac{A}{2}$=$\frac{2\sqrt{5}}{5}$,$\overrightarrow{AB}•\overrightarrow{AC}$=3,b+c=6,則邊a=( 。
A.2$\sqrt{2}$B.2$\sqrt{3}$C.2$\sqrt{5}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知橢圓C:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1,點(diǎn)M與C的焦點(diǎn)不重合,若M關(guān)于C的焦點(diǎn)的對(duì)稱點(diǎn)分別為A,B,線段MN的中點(diǎn)在C上,則|AN|+|BN|=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知二次函數(shù)f(x)=ax2+bx的圖象過(guò)點(diǎn)(-4n,0),且f′(0)=2n,(n∈N*).
(1)求f(x)的解析式;
(2)設(shè)數(shù)列{an}滿足an=f′(-n)•2n,求數(shù)列{an}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知雙曲線$c:\frac{y^2}{a^2}-\frac{x^2}{b^2}(a>0,b>0)$的漸近線方程為$y=±\frac{3}{4}x$,且其焦點(diǎn)為(0,5),則雙曲線C的方程(  )
A.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1B.$\frac{x^2}{16}-\frac{y^2}{9}=1$C.$\frac{x^2}{3}-\frac{y^2}{4}=1$D.$\frac{x^2}{4}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知直線x+y+4=0被圓x2+y2+2x-2y+a=0所截得弦長(zhǎng)為2,則實(shí)數(shù)a的值為( 。
A.-1B.-4C.-7D.-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知f(x)是定義在R上的偶函數(shù),并滿足f(x+2)=-$\frac{1}{f(x)}$,當(dāng)1≤x<2時(shí),$f(x)={log_{\frac{1}{2}}}({2-x})$,則f(6.5)=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案