17.給出下列函數(shù)①$f(x)=(\frac{1}{2})^{x}$; ②f(x)=x2; ③f(x)=x3; ④$f(x)={x}^{\frac{1}{2}}$;⑤f(x)=log2x.其中滿足條件f $(\frac{{x}_{1}+{x}_{2}}{2})$>$\frac{f({x}_{1})+f({x}_{2})}{2}$  (0<x1<x2)的函數(shù)的序號(hào)是④⑤.

分析 分別作出函數(shù)①$f(x)=(\frac{1}{2})^{x}$; ②f(x)=x2; ③f(x)=x3; ④$f(x)={x}^{\frac{1}{2}}$;⑤f(x)=log2x的圖象,數(shù)形結(jié)合可得答案.

解答 解:若滿足條件f $(\frac{{x}_{1}+{x}_{2}}{2})$>$\frac{f({x}_{1})+f({x}_{2})}{2}$ (0<x1<x2),則函數(shù)f(x)的圖象為上凸形,
分別作出函數(shù)①$f(x)=(\frac{1}{2})^{x}$; ②f(x)=x2; ③f(x)=x3; ④$f(x)={x}^{\frac{1}{2}}$;⑤f(x)=log2x的圖象,
,
數(shù)形結(jié)合可得,只有④、⑤滿足條件,
故答案為:④⑤.

點(diǎn)評(píng) 本題考查命題的真假判斷與應(yīng)用,著重考查冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)的圖象與性質(zhì),作圖分析是關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知f(x)=2x3-x,求:
(1)f(2),f(2a);
(2)判斷f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在△ABC中,若c=2acosB,則△ABC的形狀一定是( 。
A.銳角三角形B.直角三角形
C.等腰或直角三角形D.等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖幾何體E-ABCD是四棱錐,△ABD為正三角形,∠BCD=120°,CB=CD=CE=1,AB=AD=AE=$\sqrt{3}$,且EC⊥BD,
(Ⅰ)設(shè)AC,BD相交于點(diǎn)O,求證:直線EO⊥平面ABCD;
(Ⅱ)設(shè)M是棱AE的中點(diǎn),求二面角D-BM-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=lnx+$\frac{1}{2}$ax2-2x有兩個(gè)極值點(diǎn),則a的取值范圍是( 。
A.(-∞,1)B.(0,2)C.(0,1)D.(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)函數(shù)f(x)=$\left\{{\begin{array}{l}{{2^x},x≤0}\\{{{log}_2}x,x>0}\end{array}}$,則函數(shù)y=f[f(x)]的零點(diǎn)個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3 個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖所示,動(dòng)點(diǎn)P從邊長(zhǎng)為1的正方形ABCD的頂點(diǎn)A出發(fā),順次經(jīng)過(guò)頂點(diǎn)B,C,D再回到A.設(shè)x表示P點(diǎn)的路程,y表示PA的長(zhǎng)度,求y關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖,當(dāng)參數(shù)λ=λ1,λ2時(shí),連續(xù)函數(shù)y=$\frac{x}{1+λx}$(x≥0)的圖象分別對(duì)應(yīng)曲線C1和C2,則(  )
A.0<λ2<λ1B.λ2<λ1<0C.λ1<λ2<0D.0<λ1<λ2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.給出下列命題:
①sin(α+$\frac{π}{2}$)+cos(π-α)=0,
②函數(shù)f(x)=log3(x2-2x)的單調(diào)遞減區(qū)間為(-∞,1);
③已知P:|2x-3|>1,q:$\frac{1}{{{x^2}+x-6}}$>0,則P是q的必要不充分條件;
④在平面內(nèi),與兩圓x2+y2=1及x2+y2-8x+12=0都外切的動(dòng)圓圓心的軌跡是雙曲線.
其中所有正確命題的序號(hào)為①③.

查看答案和解析>>

同步練習(xí)冊(cè)答案