(本題滿分13分)已知?jiǎng)訄A與直線相切,且與定圓 外切,求動(dòng)圓圓心的軌跡方程.

解析試題分析:設(shè)動(dòng)圓圓心為,半徑為,
則由題意可得的距離與到直線的距離相等,              ……6分
由拋物線的定義可知:動(dòng)圓圓心的軌跡是以為焦點(diǎn),以為準(zhǔn)線的一條拋物線,其方程為.                                                 ……13分
考點(diǎn):本小題主要考查拋物線的定義與拋物線標(biāo)準(zhǔn)方程的求法.
點(diǎn)評(píng):求拋物線的標(biāo)準(zhǔn)方程時(shí),要合理利用拋物線的定義,并且要分清拋物線的對(duì)稱軸和開口方向.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,橢圓C以過點(diǎn)A(1,),兩個(gè)焦點(diǎn)為(-1,0)(1,0)?
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值? 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題15分)設(shè)拋物線和點(diǎn),.斜率為的直線與拋物線相交不同的兩個(gè)點(diǎn).若點(diǎn)恰好為的中點(diǎn).
(1)求拋物線的方程,
(2) 拋物線上是否存在異于的點(diǎn),使得經(jīng)過點(diǎn)的圓和拋物線處有相同的切線.若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題14分)已知直線經(jīng)過橢圓的左頂點(diǎn)A和上頂點(diǎn)D,橢圓的右頂點(diǎn)為,點(diǎn)是橢圓上位于軸上方的動(dòng)點(diǎn),直線與直線分別交于兩點(diǎn)。

(I)求橢圓的方程;
(Ⅱ)求線段的長(zhǎng)度的最小值;
(Ⅲ)當(dāng)線段的長(zhǎng)度最小時(shí),在橢圓上是否存在這樣的點(diǎn),使得的面積為?若存在,確定點(diǎn)的個(gè)數(shù),若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分) 已知拋物線與直線相交于兩點(diǎn).
(1)求證:以為直徑的圓過坐標(biāo)系的原點(diǎn);(2)當(dāng)的面積等于時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(14分)設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,在軸負(fù)半軸上有一點(diǎn),滿足,且.

(Ⅰ)求橢圓的離心率;
(Ⅱ)D是過三點(diǎn)的圓上的點(diǎn),D到直線的最大距離等于橢圓長(zhǎng)軸的長(zhǎng),求橢圓的方程;
(Ⅲ)在(Ⅱ)的條件下,過右焦點(diǎn)作斜率為的直線與橢圓交于兩點(diǎn),在軸上是否存在點(diǎn)使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

拋物線的焦點(diǎn)為,過點(diǎn)的直線交拋物線于,兩點(diǎn).
①若,求直線的斜率;
②設(shè)點(diǎn)在線段上運(yùn)動(dòng),原點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn)為,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知焦點(diǎn)在軸上的雙曲線的兩條漸近線過坐標(biāo)原點(diǎn),且兩條漸近線與以
點(diǎn) 為圓心,1為半徑的圓相切,又知的一個(gè)焦點(diǎn)與A關(guān)于直線對(duì)稱.
(1)求雙曲線的方程;
(2)設(shè)直線與雙曲線的左支交于兩點(diǎn),另一直線經(jīng)過 及的中點(diǎn),求直線軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,并且直線是拋物線的一條切線。
(1)求橢圓的方程
(2)過點(diǎn)的動(dòng)直線交橢圓、兩點(diǎn),試問:在直角坐標(biāo)平面上是否存在一個(gè)定點(diǎn),使得以為直徑的圓恒過點(diǎn)?若存在求出的坐標(biāo);若不存在,說明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案